摘要:
An implantable medical device and method are provided for assessing autonomic tone and risk factors associated with arrhythmias and, based on this assessment, an early recurrence of ventricular tachycardia or ventricular fibrillation is predicted. Specifically, changes in R—R interval, heart rate variability, patient activity, and myocardial ischemia are measured prior to and after a detected an arrhythmia episode. A recurrence score is calculated as a weighted sum of measured parameters and compared to a prediction criterion. The prediction criterion may be a preset threshold score or an individualized episode template based on previously calculated recurrence scores associated with recurring episodes. Stored parameters and episode-related data may be downloaded for offline analyses for optimizing prediction criteria and monitoring patient status.
摘要:
Methods and/or devices for initiating an automatic adjustment of arrhythmia detection parameters (e.g., upon delivery of cardiac therapy after detection of VT/VF).
摘要:
An implantable medical device that includes a microprocessor that characterizes cardiac activity of a patient to enable the implantable medical device to deliver therapy in response to an identified arrhythmia event. A monitor/controller monitors the characterized cardiac activity and the delivered therapy, and controls activation of triggered overdrive pacing subsequent to the delivered therapy.
摘要:
An implantable medical device and associated method are provided for detecting non-sustained arrhythmias and determining a metric of non-sustained arrhythmias. The metric may be used for predicting the occurrence of a sustained arrhythmia or for automatically adjusting the parameters used for detecting a sustained arrhythmia.
摘要:
Techniques for monitoring T-wave alternans (TWAs) in a patient are described. An implantable medical device (IMD), such as an implantable pacemaker, cardioverter, or diagnostic device, generates an EGM signal, e.g., a far field EGM signal, samples the EGM signal to obtain a single T-wave amplitude value for each T-wave over a plurality of beats, and stores the T-wave amplitude values in memory. The IMD creates a time series of the T-wave amplitude values stored in memory, calculates the power spectral density for the times series, and selects a power spectral density of a particular frequency, e.g., 0.5 cycles per beat, as the TWA value. The IMD may periodically determine TWA values for the patient and store the values in memory. The TWA values may be presented to medical personnel, e.g., as a trend. The IMD may deliver or modify therapy, or provide an alert, based on the TWA values.
摘要:
Improved pacing thresholds for capturing the heart are achieved by forming a discontinuity in the cardiac tissue of the heart chamber, disposing a pacing electrode at a distance less than a space constant of the cardiac tissue from the discontinuity in the cardiac tissue, and applying a stimulus of a first polarity at an energy insufficient to cause the directly stimulated tissue adjacent to the pacing electrode to propagate a depolarization wave through the cardiac tissue mass of the heart chamber but sufficient to induce a transmembrane potential change at the tissue adjacent to the discontinuity that results in a propagated wave front. Thus, pacing energy is advantageously reduced.
摘要:
An implantable medical device for optically sensing action potential signals in excitable body tissue. The device includes an elongated tubular lead body carrying an optical fiber extending from a proximal lead end to a distal lead end to position the optical fiber at a target site. The lead body additionally carries a conduit for dispensing a voltage-sensitive fluorescent dye into tissue surrounding the target site. The optical fiber transmits excitation light to the fluorescent dye to cause the dye to fluoresce with varying intensity as the transmembrane potentials of local tissue cells vary due to passing depolarization wavefronts. The optical fiber transmits the fluorescence signal to the device to generate an action potential signal or fiducial points of an action potential signal for use in accurately measuring and characterizing electrical activity of excitable tissue.
摘要:
An implantable medical device for optically sensing action potential signals in excitable body tissue. The device includes an elongated tubular lead body carrying an optical fiber extending from a proximal lead end to a distal lead end to position the optical fiber at a target site. The lead body additionally carries a conduit for dispensing a voltage-sensitive fluorescent dye into tissue surrounding the target site. The optical fiber transmits excitation light to the fluorescent dye to cause the dye to fluoresce with varying intensity as the transmembrane potentials of local tissue cells vary due to passing depolarization wavefronts. The optical fiber transmits the fluorescence signal to the device to generate an action potential signal or fiducial points of an action potential signal for use in accurately measuring and characterizing electrical activity of excitable tissue.
摘要:
Improved pacing thresholds for capturing the heart are achieved by forming a discontinuity in the cardiac tissue of the heart chamber, disposing a pacing electrode at a distance exceeding a space constant of the cardiac tissue from the discontinuity in the cardiac tissue, and applying a stimulus of a first polarity at an energy insufficient to cause the directly stimulated tissue adjacent to the pacing electrode to propagate a depolarization wave through the cardiac tissue mass of the heart chamber but sufficient to induce a transmembrane potential change at the tissue adjacent to the discontinuity that results in a propagated wave front. Thus, pacing energy is advantageously reduced.
摘要:
An implantable medical device (IMD), such as an implantable pacemaker, cardioverter, or diagnostic device, generates an EGM signal, e.g., a far field EGM signal, samples the EGM signal to obtain a single T-wave amplitude value for each T-wave over a plurality of beats, and stores the T-wave amplitude values in memory. The IMD creates a time series of the T-wave amplitude values stored in memory, calculates the power spectral density for the times series, and selects a power spectral density of a particular frequency, e.g., 0.5 cycles per beat, as the TWA value. The IMD may periodically determine TWA values for the patient and store the values in memory. The TWA values may be presented to medical personnel, e.g., as a trend. The IMD may deliver or modify therapy, or provide an alert, based on the TWA values.