摘要:
A catheter shaft includes an inner layer of a first polymeric material, an intermediate layer of a second polymeric material, an outer layer of a third polymeric material, a first wire reinforcing layer encapsulated between the inner and intermediate layers, and a second wire reinforcing layer encapsulated between the outer and intermediate layers. Typically, the first wire reinforcing layer includes one or more metallic wires helically wound in one direction and the second wire reinforcing layer includes one or more metallic wires helically wound in the opposite direction. The intermediate layer is bonded to the inner and outer layers, as by extruding layers over one another or by thermal lamination or reflow bonding. Typically, the intermediate layer has a larger yield strain and/or a lower flexural modulus and/or a lower durometer than at least one of the inner layer and the outer layer.
摘要:
A method of manufacturing a catheter shaft includes the steps of forming an inner layer of a first polymeric material, forming a plait matrix layer including a second polymeric material about the inner layer, and forming an outer layer of a third polymeric material about the plait matrix layer. The plait matrix layer includes a braided wire mesh partially or fully embedded within the second polymeric material, which is different from at least one of the first polymeric material forming the inner layer and the third polymeric material forming the outer layer. The second polymeric material has a higher yield strain and/or a lower hardness than at least the first polymeric material, and preferably both the first and the third polymeric materials. The first polymeric material and the third polymeric material may be different or the same. The catheter shaft may be formed by stepwise extrusion, co-extrusion, and/or reflow processes.
摘要:
The invention relates to biocompatible polycarbonate/polyamide polymer compositions for use in medical and surgical devices. Additional additives, crosslinking agents, phosphites, and optionally a radiopaque filler or fillers can be used to produce the high performance compositions desired. The polymer compositions have improved melt processability along with balanced or enhanced physical and mechanical properties, especially when combined or over-extruded onto or covering other polymer layers, such as soft and/or flexible layers commonly used in medical device applications and catheter tips, for example. The ability to incorporate radiopaque compounds into these polymer compositions during melt processing offers improved methods for monitoring and visualizing medical devices when used inside the body and as well as improving the operating characteristics of the medical device components
摘要:
A splittable/peelable tubular body (2) of a catheter or sheath wherein the tubular body (2) has a splittable/peelable atraumatic tip (14) is disclosed. The atraumatic tip (4) is generally softer than the tubular body (2). The tubular body (2) and atraumatic tip (4) each comprise a peel mechanism longitudinally extending along their respective lengths. The peel mechanisms are formed by longitudinally extending regions of interfacial bonding (11) between first and second longitudinally extending strips (8, 10) of polymer material. Each strip (8, 10) forms at least a portion of an outer circumferential surface of the tubular body (2) and atraumatic tip (4). A region of stress concentration extends along the region of interfacial bonding. The stress concentration facilitates the splitting of the tubular body (2) and atraumatic tip (4) along their respective peel mechanisms.
摘要:
A splittable/peelable tubular body (2) of a catheter or sheath wherein the tubular body (2) has a splittable/peelable atraumatic tip (14) is disclosed. The atraumatic tip (4) is generally softer than the tubular body (2). The tubular body (2) and atraumatic tip (4) each comprise a peel mechanism longitudinally extending along their respective lengths. The peel mechanisms are formed by longitudinally extending regions of interfacial bonding (11) between first and second longitudinally extending strips (8, 10) of polymer material. Each strip (8, 10) forms at least a portion of an outer circumferential surface of the tubular body (2) and atraumatic tip (4). A region of stress concentration extends along the region of interfacial bonding. The stress concentration facilitates the splitting of the tubular body (2) and atraumatic tip (4) along their respective peel mechanisms.
摘要:
A method of manufacturing a catheter shaft includes the steps of forming an inner layer of a first polymeric material, forming a plait matrix layer including a second polymeric material about the inner layer, and forming an outer layer of a third polymeric material about the plait matrix layer. The plait matrix layer includes a braided wire mesh partially or fully embedded within the second polymeric material, which is different from at least one of the first polymeric material forming the inner layer and the third polymeric material forming the outer layer. The second polymeric material has a higher yield strain and/or a lower hardness than at least the first polymeric material, and preferably both the first and the third polymeric materials. The first polymeric material and the third polymeric material may be different or the same. The catheter shaft may be formed by stepwise extrusion, co-extrusion, and/or reflow processes.
摘要:
The present invention is a splitable/peelable reinforced flexible tubular body (10) for a catheter or sheath (12). The body (10) comprises a proximal end (14), a distal end (16), a wall structure (18), and a lumen (20) defined by the wall structure (18). The wall structure (18) extends between the ends and includes a reinforcement layer (22) within the wall structure (18) and a separation line (26) extending longitudinally along the wall structure (18). The separation line (26) is adapted to facilitate the splitting/peeling of the wall structure (18) to allow a medical device such as a pacemaker lead to be removed from within the tubular body (10).
摘要:
The present invention is a method of manufacturing a flexible tubular body for catheter, sheath or similar medical device. The method comprises pre-extruding an inner layer of the body from a thermoplastic polymer and then pulling the inner layer over a mandrel and tightening the layer down. If wire lumens were not integrally formed in the inner layer when pre-extruded, then two polymer spaghetti tubes, each with wire lumens, are laid 180 degrees apart axially along the outer surface of the inner layer. Deflection wires are then fed into the wire lumens. A cylindrical wire braid is woven or pulled over the inner layer (and the spaghetti tubes, as the case may be) and tightened down. The aforementioned components are then encased in an outer polymer layer. A heat-shrinkable tube is then placed over the outer layer. A pressurized fluid is injected into each wire lumen to maintain the internal diameter of each wire lumen at a diameter that is greater than the diameter of the deflection wire received in each wire lumen. Heat is then applied to the body and heat-shrinkable tube to cause the layers to laminate together. Once the newly laminated body has sufficiently cooled, the heat-shrinkable tube is removed from the body.
摘要:
A method of manufacturing a catheter shaft includes the steps of forming an inner layer of a first polymeric material, forming a plait matrix layer including a second polymeric material about the inner layer, and forming an outer layer of a third polymeric material about the plait matrix layer. The plait matrix layer includes a braided wire mesh partially or fully embedded within the second polymeric material, which is different from at least one of the first polymeric material forming the inner layer and the third polymeric material forming the outer layer. The second polymeric material has a higher yield strain and/or a lower hardness than at least the first polymeric material, and preferably both the first and the third polymeric materials. The first polymeric material and the third polymeric material may be different or the same. The catheter shaft may be formed by stepwise extrusion, co-extrusion, and/or reflow processes.
摘要:
A guidable, or steerable, or deflectable catheter is provided that includes a proximal portion and a distal portion for insertion into a body cavity. A selectively deflectable segment having an anisotropic bending stiffness for deflection in individual planes is incorporated into the distal portion of the catheter shaft. Upon actuation of pull wires, the distal deflectable segment may be deflected to move/sweep the distal catheter tip through a sweeping plane. The anisotropic bending stiffness of the distal deflectable segment permits in-plane movement of the distal catheter tip in the sweeping plane while resisting any out-of-plane movements. In one arrangement, stiffening elements are selectively disposed within the distal deflectable segment such that the out-of-plane bending stiffness is largely increased and greater than the in-plane bending stiffness for deflection in the sweeping plane. In another arrangement, the cross section of a distal deflectable segment is altered to produce anisotropic area inertias of moment about its centroidal axes, and thus anisotropic bending stiffnesses.