摘要:
A system and method of a diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged, a detector that receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source and attenuated by the object, a data acquisition system (DAS) operably connected to the detector, and a computer operably connected to the DAS. The computer is programmed to obtain CT scan data with two or more incident energy spectra, decompose the obtained CT scan data into projection CT data of two or more basis materials, reconstruct linearly weighted projections of the two or more basis materials, determine an optimized energy for the two or more basis materials within a region-of-interest (ROI), and form a monochromatic image of the projection CT data at the optimized energy using the two or more basis material projections.
摘要:
A diagnostic imaging system in an example comprises a high frequency electromagnetic energy source, a detector, a data acquisition system (DAS), and a computer. The high frequency electromagnetic energy source emits a beam of high frequency electromagnetic energy toward an object to be imaged and be resolved by the system. The detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The DAS is operably connected to the detector. The computer is operably connected to the DAS and programmed to employ an inversion table or function to convert N+2 measured projections at different incident spectra into material specific integrals for N+2 materials that comprise two non K-edge basis materials and N K-edge contrast agents. N comprises an integer greater than or equal to 1.
摘要:
A diagnostic imaging system in an example comprises a high frequency electromagnetic energy source, a detector, a data acquisition system (DAS), and a computer. The high frequency electromagnetic energy source emits a beam of high frequency electromagnetic energy toward an object to be imaged and be resolved by the system. The detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The DAS is operably connected to the detector. The computer is operably connected to the DAS and programmed to employ an inversion table or function to convert N+2 measured projections at different incident spectra into material specific integrals for N+2 materials that comprise two non K-edge basis materials and N K-edge contrast agents. N comprises an integer greater than or equal to 1.
摘要:
A system and method of a diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged, a detector that receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source and attenuated by the object, a data acquisition system (DAS) operably connected to the detector, and a computer operably connected to the DAS. The computer is programmed to obtain CT scan data with two or more incident energy spectra, decompose the obtained CT scan data into projection CT data of two or more basis materials, reconstruct linearly weighted projections of the two or more basis materials, determine an optimized energy for the two or more basis materials within a region-of-interest (ROI), and form a monochromatic image of the projection CT data at the optimized energy using the two or more basis material projections.
摘要:
A technique for acquiring desired image data in an imaging system comprising at least one radiation source and a detector is described. Initially, preliminary image data corresponding to an object may be acquired. Further, at least one parameter associated with the radiation source and corresponding to a particular view angle of the radiation source may be determined based on the preliminary image data and a priori information. Similarly, at least one parameter associated with the detector and corresponding to the particular view angle may be determined based on a priori information and the preliminary image data. Efficient operating modes of the radiation source and the detector corresponding to the particular view angle may be selected based on the determined parameters to achieve a desired system performance. Subsequently, the final image data may be acquired using the selected operating modes of the radiation source and the detector.
摘要:
A CT detector includes a first detector configured to convert radiographic energy to electrical signals representative of energy sensitive radiographic data and a second detector configured to convert radiographic energy to electrical signals representative of energy sensitive radiographic data and positioned to receive x-rays that pass through the first detector. A logic controller is electrically connected to the first detector and the second detector and is configured to receive a logic output signal from the second detector indicative of an amount of a saturation level of the first detector, compare the logic output signal to a threshold value, and output, based on the comparison, electrical signals from the first detector, the second detector, or a combination thereof to an image chain.
摘要:
A technique for acquiring desired image data in an imaging system comprising at least one radiation source and a detector is described. Initially, preliminary image data corresponding to an object may be acquired. Further, at least one parameter associated with the radiation source and corresponding to a particular view angle of the radiation source may be determined based on the preliminary image data and a priori information. Similarly, at least one parameter associated with the detector and corresponding to the particular view angle may be determined based on a priori information and the preliminary image data. Efficient operating modes of the radiation source and the detector corresponding to the particular view angle may be selected based on the determined parameters to achieve a desired system performance. Subsequently, the final image data may be acquired using the selected operating modes of the radiation source and the detector.
摘要:
A CT system includes a gantry, an x-ray source, a generator configured to energize the x-ray source to a first kVp and to a second kVp, a detector, and a controller. The controller is configured energize the x-ray source to the first kVp for a first time period, subsequently energize the x-ray source to the second kVp for a second time period, integrate data for a first integration period that includes a portion of a steady-state period of the x-ray source at the first kVp, integrate data for a second integration period that includes a portion of a steady-state period of the x-ray source at the second kVp, compare a signal-to-noise ratio (SNR) during the first integration period (SNRH) and the second integration period (SNRL), adjust an operating parameter of the CT system to optimize an SNRH with SNRL, and generate an image using the integrated data.
摘要:
A diagnostic imaging system includes an x-ray source that emits a beam of x-ray energy toward an object to be imaged and an energy discriminating (ED) detector that receives the x-ray energy emitted by the x-ray energy source. The ED detector includes a first layer having a first thickness, wherein the first layer comprises a semiconductor configurable to operate in at least an integrating mode and a second layer having a second thickness greater than the first thickness, and configured to receive x-rays that pass through the first layer. The system further includes a data acquisition system (DAS) operably connected to the ED detector and a computer that is operably connected to the DAS. The computer is programmed to identify saturated data in the second layer and substitute the saturated data with non-saturated data from a corresponding pixel in the first layer.
摘要:
An energy-sensitive computed tomography system is provided. The energy-sensitive computed tomography system includes an X-ray source configured to emit an X-ray beam resulting from electrons impinging upon a target material. The energy-sensitive computed tomography system also includes an object positioned within the X-ray beam. The energy-sensitive computed tomography system further includes a detector configured to receive a transmitted beam of the X-rays through the object. The energy-sensitive computed tomography system also includes a filter having an alternating pattern disposed between the X-ray source and the detector, the filter configured to facilitate measuring projection data that can be used to generate low-energy and high-energy spectral information.