Abstract:
A data receiver implemented in an integrated circuit is described. The data receiver comprises an input receiving a data signal; a first equalization circuit coupled to receive the data signal, wherein the first equalization circuit is used to receive the data of the data signal; and a second equalization circuit coupled to receive the data signal, wherein the second equalization circuit is used to adjust a clock phase offset.
Abstract:
An out-of-band (OOB) detection circuit includes: a positive input node; a negative input node; a resistive circuit comprising a first resistor coupled between a first supply node and a first node, a variable resistor coupled between the first node and a second node, and a second resistor coupled between the second node and a ground; a first comparator configured to compare a difference between a positive input signal received at the positive input node and a negative input signal received at the negative input node against a positive threshold value, and a second comparator configured to compare the difference between the positive input signal received at the positive input node and the negative input signal received at the negative input node against a negative threshold value.
Abstract:
Methods and apparatus are described for synchronously stepping at least one of a data phase interpolator (PI) code or a crossing PI code in a clock and data recovery (CDR) circuit until one or more preset criteria are satisfied. One example method generally includes determining that a condition has been met; based on the determination, stepping, in a CDR circuit, at least one of a data PI code or a crossing PI code for each cycle of a clock; stopping the stepping based on one or more criteria to generate a predetermined state of the data PI code and the crossing PI code, wherein the predetermined state comprises an offset between the data PI code and the crossing PI code; receiving a data stream; and performing clock and data recovery on the data stream based on the offset between the data PI code and the crossing PI code.
Abstract:
A receiver in an integrated circuit device is described. The circuit comprises a receiver having a clock and data recovery circuit coupled to receive data signals modulated with a transmitter clock signal; and a clock generator coupled to receive an output of the clock and data recovery circuit, the clock generator providing a modulated reference clock to the receiver, based upon a reference clock signal which is independent of the transmitter clock signal; wherein the modulated reference clock provided to the receiver is synchronized with the transmitter clock signal. A method of receiving data in an integrated circuit is also described.
Abstract:
A data receiver implemented in an integrated circuit is described. The data receiver comprises an input receiving a data signal; a first equalization circuit coupled to receive the data signal, wherein the first equalization circuit is used to receive the data of the data signal; and a second equalization circuit coupled to receive the data signal, wherein the second equalization circuit is used to adjust a clock phase offset.
Abstract:
In an apparatus, a receiver includes a clock data recovery module to provide a dense distribution of waveform edges across an adjustment range, and an eye scan circuit to obtain samples at a first sample position and a second sample position to provide an error count for a sample count for the samples. An eye scan module, coupled to the receiver, is configured to: scan for the samples at the first sample position of a first type for each of a plurality of sample positions of a second type to obtain an error count for a sample count for each of the plurality of sample positions; locate a threshold BER from the scan; determine an amount and a direction of a sample offset at the threshold BER from a reference location; and adjust either the first sample position or the second sample position responsive to the amount and the direction.