Abstract:
A circuit includes an amplifier including a differential input stage including a first input terminal and a second input terminal. The circuit further includes a differential input line coupled to the first input terminal and the second input terminal, and shielding at least partially encompassing the differential input line. The shielding is connected to a node of the differential input stage of the amplifier.
Abstract:
An apparatus relating generally to an analog-to-digital converter (“ADC”) is disclosed. In such an apparatus, the ADC is configured for successive approximations. The ADC includes a digital-to-analog converter (“DAC”), a comparator, and a control block. The DAC is coupled to receive a reference input signal and coupled to provide an analog output signal. The analog output signal is capacitively coupled to an analog input node through a capacitor. The capacitor is coupled between the DAC and the comparator to provide capacitive coupling therebetween. The comparator is coupled to the analog input node. The comparator is further coupled to provide a comparator output signal to the control block. The control block is configured for successive approximations to provide a digital output signal to a digital output node. The DAC is coupled to the digital output node to receive the digital output signal as a feedback input signal.
Abstract:
A circuit includes an amplifier including a differential input stage including a first input terminal and a second input terminal. The circuit further includes a differential input line coupled to the first input terminal and the second input terminal, and shielding at least partially encompassing the differential input line. The shielding is connected to a node of the differential input stage of the amplifier.