摘要:
A porous polymer sheet or membrane is provided with a thin coating of an electrically non-conductive ceramic composition and the coating conforms to all surfaces, including the pore surfaces, of the membrane. Such a coated membrane serves well, for example, as an intra-cell separator in a lithium ion battery. The coating increases the mechanical properties and thermal stability of the separator in battery operation and retains electrolyte. The coating may be formed by a two-step vapor-phase process in which atoms of one or more metals such as aluminum, calcium, magnesium, titanium, silicon and/or zirconium are deposited in a conformal layer on a workpiece surface. The metal atoms may then be reacted with ammonia, carbon dioxide, and or water to form their respective non-conductive nitrides, carbides, and/or oxides on the surface. The two-step process is repeated as necessary to obtain a ceramic material coating of desired thickness.
摘要:
A porous polymer sheet or membrane is provided with a thin coating of an electrically non-conductive ceramic composition and the coating conforms to all surfaces, including the pore surfaces, of the membrane. Such a coated membrane serves well, for example, as an intra-cell separator in a lithium ion battery. The coating increases the mechanical properties and thermal stability of the separator in battery operation and retains electrolyte. The coating may be formed by a two-step vapor-phase process in which atoms of one or more metals such as aluminum, calcium, magnesium, titanium, silicon and/or zirconium are deposited in a conformal layer on a workpiece surface. The metal atoms may then be reacted with ammonia, carbon dioxide, and or water to form their respective non-conductive nitrides, carbides, and/or oxides on the surface. The two-step process is repeated as necessary to obtain a ceramic material coating of desired thickness.
摘要:
A method for forming a membrane includes a step of dissolving a lithium salt in a solution including an ionomer that includes protogenic groups to form a modified solution. A membrane is formed from the solution containing the lithium salt and the ionomer that includes protogenic groups. The membrane is dried and then contacted with water to form a plurality of pores therein.
摘要:
A method for forming a membrane includes a step of dissolving a lithium salt in a solution including an ionomer that includes protogenic groups to form a modified solution. A membrane is formed from the solution containing the lithium salt and the ionomer that includes protogenic groups. The membrane is dried and then contacted with water to form a plurality of pores therein.
摘要:
An electrolyte for a lithium ion battery includes a vitreous eutectic mixture represented by the formula AxBy, where A is a salt chosen from a lithium fluoroalkylsulfonimide or a lithium fluoroarylsulfonimide, B is a solvent chosen from an alkylsulfonamide or an arylsulfonamide, and x and y are the mole fractions of A and B, respectively.
摘要:
A high surface area support material is formed of an intimate mixture of carbon clusters and titanium oxide clusters. A catalytic metal, such as platinum, is deposited on the support particles and the catalyzed material used as an electrocatalyst in an electrochemical cell such as a PEM fuel cell. The composite material is prepared by thermal decomposition and oxidation of an intimate mixture of a precursor carbon polymer, a titanium alkoxide and a surfactant that serves as a molecular template for the mixed precursors.
摘要:
A lithium ion battery includes a positive electrode, a negative electrode, a microporous polymer separator disposed between the negative electrode and the positive electrode, and a polymer having a chelating agent tethered thereto. The polymer is incorporated into the lithium ion battery such that the chelating agent complexes with metal cations in a manner sufficient to not affect movement of lithium ions across the microporous polymer separator during operation of the lithium ion battery.
摘要:
One embodiment of the invention includes a method comprising measuring the level of a fluid in a system in a vehicle comprising measuring an electrical property of the fluid indicative of the amount of air in the fluid and comparing the measured electrical property to a reference. The measured electrical property may include at least one of electrical resistivity or electrical permittivity. Another embodiment of the invention includes a method comprising measuring an electrical property of a fluid, measuring an electrical property of an air-free fluid sample, and determining a volume fraction of air in the fluid using the electrical property of the fluid and the electrical property of the air-free fluid sample, wherein the electrical property comprises at least one of electrical resistivity or electrical permittivity. In some embodiments an indication can be provided when the slope of the electrical property versus time changes.
摘要:
A precursor halide compound is reduced to a predetermined product at substantially ambient conditions. The halide is added to an anhydrous liquid reaction medium containing one or more alkali metals or alkaline earth metals as reductants. The metal reductants are dispersed as very small globules in the liquid by cavitation of the liquid, such as by application of high intensity ultrasonic vibrations or high-shear mixing to the reaction vessel. Continued cavitation of the liquid medium affects low temperature reduction of the precursor halide(s) to produce a metal, metal alloy, metal compound, ceramic material, metal matrix-ceramic composite material, or the like. The practice may be applied, for example, to titanium tetrachloride, alone or with other chlorides, to produce titanium metal, titanium alloys (for example Ti-6Al-4V), and titanium compounds (TiSi2).
摘要:
A titanium halide and, optionally, other precursor halides compound are reduced to a predetermined titanium product, suitably at or near ambient conditions. Titanium tetrachloride, for example, is added to an anhydrous liquid reaction medium containing one or more alkali metals or alkaline earth metals as reductants. The metal reductants are dispersed as very small globules in the liquid by cavitation of the liquid reaction medium, such as by application of high intensity ultrasonic vibrations or high-shear mixing to the reaction vessel. Continued cavitation of the liquid medium affects relatively low temperature reduction of the precursor halide(s) to produce a titanium-containing product such as titanium metal, a titanium alloy or compound, or a titanium matrix-ceramic composite material, or the like.