摘要:
According to the disclosure, there is provided a method for the UE to mitigate Cell-specific Reference Signal (CRS) interference (not only the other interference cells' CRS interference but also the serving cell's CRS interference) during ePDCCH/PDSCH demodulation. In one non-limiting embodiment, a CRS interference mitigation method may include steps of: determining CRS having been configured is not serving cell's CRS; and mitigating interference originating from the serving cell's CRS by referring to serving cell's CRS configuration. The present disclosure also relates to a UE for implementing the above CRS interference mitigation method.
摘要:
The present disclosure relates to methods, a user equipment and a radio network node for interference mitigation in a dynamic TDD system comprising a user equipment (201, 700), a serving base station (202) serving the user equipment (201, 700), at least one neighboring base station (203) and at least one neighboring user equipment (204) served by the at least neighboring base station (203). The method comprises obtaining (S301) link direction information and at least one transmission parameter, wherein the link direction information and the at least one transmission parameter are associated with downlink transmission of the at least one neighboring base station (203) or uplink transmission of the at least one neighboring user equipment (204). The method further comprises mitigating (S302) interference caused by the downlink transmission or uplink transmission based upon the link direction information and the at least one transmission parameter. The methods, user equipment and radio network node of the present disclosure may overcome or alleviate the interference issues in the dynamic TDD system and give quality and efficiency of the wireless communication a big boost.
摘要:
The present disclosure relates to methods, a user equipment and a radio network node for interference mitigation in a dynamic TDD system comprising a user equipment (201, 700), a serving base station (202) serving the user equipment (201, 700), at least one neighboring base station (203) and at least one neighboring user equipment (204) served by the at least neighboring base station (203). The method comprises obtaining (S301) link direction information and at least one transmission parameter, wherein the link direction information and the at least one transmission parameter are associated with downlink transmission of the at least one neighboring base station (203) or uplink transmission of the at least one neighboring user equipment (204). The method further comprises mitigating (S302) interference caused by the downlink transmission or uplink transmission based upon the link direction information and the at least one transmission parameter. The methods, user equipment and radio network node of the present disclosure may overcome or alleviate the interference issues in the dynamic TDD system and give quality and efficiency of the wireless communication a big boost.
摘要:
A first radio network node (110) and a method therein for measuring interference as well as a second radio network node (120) and a method therein for enabling the first radio network node to measure interference are disclosed. The first radio network node (110) obtains (201) configuration information for indicating a designated subframe in which a reference signal for measurement of the interference is to be transmitted by the second radio network node (120). The second radio network node (120) obtains (202) configuration information for configuring a designed subframe for transmission of a reference signal. The first radio network node (110) receives (205), in the designated subframe indicated by the configuration information, the reference signal transmitted by the second radio network node (120). The first radio network node (110) determines (206) a value of the interference based on the reference signal.
摘要:
Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.
摘要:
A first radio network node (110) and a method therein for measuring interference as well as a second radio network node (120) and a method therein for enabling the first radio network node to measure interference are disclosed. The first radio network node (110) obtains (201) configuration information for indicating a designated subframe in which a reference signal for measurement of the interference is to be transmitted by the second radio network node (120). The second radio network node (120) obtains (202) configuration information for configuring a designed subframe for transmission of a reference signal. The first radio network node (110) receives (205), in the designated subframe indicated by the configuration information, the reference signal transmitted by the second radio network node (120). The first radio network node (110) determines (206) a value of the interference based on the reference signal.
摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.