摘要:
A wireless communications device supports a constant transmission power mode of operation and a time varying transmission power mode of operation for transmitting data, e.g., peer discovery data. The device determines an amount of network congestion and switches between the two modes of operation as a function of the determined amount of network congestion. Various described methods and apparatus are well suited for use in a peer to peer ad hoc wireless communications system in which a limited amount of air link resources are available for peer discovery signaling and the same peer discovery resources are, at times, used concurrently by multiple devices. When network congestion is low, the device operates in the constant transmission power mode. When network congestion is high, the device operates in the time varying power mode. Devices sharing a common peer discovery resource in a local area intentionally select different time varying transmission patterns.
摘要:
A method of operating a wireless device includes selecting a connection identifier with a first node, receiving a scheduling control signal on a resource associated with the connection identifier, and determining a presence of a second node transmitting on the same resource associated with the connection identifier based on the received scheduling control signal.
摘要:
Methods and apparatus for allocating traffic contention resource units in a wireless communications system in which decisions are made in a distributed manner are described. A wireless communications device, corresponding to a link, self allocates resource units for traffic contention. Decisions regarding initially acquiring resources, relinquishing acquired resources, and/or acquiring additional resources for traffic contention are based on detected levels of network congestion and/or detected changes in network congestion. A wireless communications device detects a level of network congestion and determines a number of resource units to acquire for traffic contention based on the detected level of network congestion.
摘要:
A method of operating a wireless device includes selecting a connection identifier with a first node, receiving a scheduling control signal on a resource associated with the connection identifier, and determining a presence of a second node transmitting on the same resource associated with the connection identifier based on the received scheduling control signal.
摘要:
Methods and apparatus for allocating traffic contention resource units in a wireless communications system in which decisions are made in a distributed manner are described. A wireless communications device, corresponding to a link, self allocates resource units for traffic contention. Decisions regarding initially acquiring resources, relinquishing acquired resources, and/or acquiring additional resources for traffic contention are based on detected levels of network congestion and/or detected changes in network congestion. A wireless communications device detects a level of network congestion and determines a number of resource units to acquire for traffic contention based on the detected level of network congestion.
摘要:
A wireless communications device supports a constant transmission power mode of operation and a time varying transmission power mode of operation for transmitting data, e.g., peer discovery data. The device determines an amount of network congestion and switches between the two modes of operation as a function of the determined amount of network congestion. Various described methods and apparatus are well suited for use in a peer to peer ad hoc wireless communications system in which a limited amount of air link resources are available for peer discovery signaling and the same peer discovery resources are, at times, used concurrently by multiple devices. When network congestion is low, the device operates in the constant transmission power mode. When network congestion is high, the device operates in the time varying power mode. Devices sharing a common peer discovery resource in a local area intentionally select different time varying transmission patterns.
摘要:
Methods and apparatus for efficiently scheduling links in wireless communications networks are described. Various described methods and apparatus are well suited for use in ad hoc wireless networks in which scheduling decisions are made in a distributed and/or decentralized manner. In some embodiments, the links in a network, e.g., in a peer to peer ad hoc network, are adaptively grouped based on comparable link channel gain. Exemplary signaling used, in some but not necessarily all embodiments, by devices to estimate channel gains include broadcast connection identifier signals and reverse broadcast connection identifier signals. Grouping links into sets based on comparable link channel gain, and selectively ordering the scheduling priorities of the different groups, is used to improve scheduling efficiency, e.g., decrease the likelihood that unnecessary yielding occurs.
摘要:
A method of operating a wireless device is provided in which a number of neighboring nodes is estimated, a medium access priority to access a communication resource in a current timeslot is determined, and whether to transmit a scheduling control signal in the current timeslot is determined based on the number of neighboring nodes and the medium access priority.
摘要:
An apparatus, a method of the apparatus, and a computer program in the apparatus are provided in which the apparatus determines a group to which each of a plurality of wireless devices is associated based on signals received from the plurality of wireless devices. The apparatus selects a group for access to a wireless medium from a plurality of groups based on the group determined for each of the plurality of wireless devices and based on reducing interference with the plurality of wireless devices. Each of the plurality of groups has a different priority. The apparatus communicates using peer-to-peer communication on the wireless medium with a priority based on the selected group.
摘要:
Methods and apparatus for initiating a traffic transmission between a first device and a second device are disclosed. One method includes determining whether the first device has a receive priority or a transmit priority over the second device during a first data frame, determining whether the first device has data to transmit to the second device during the first data frame, transmitting, from the first device, a receive priority control signal during a receive priority control slot (Rxp) corresponding to the first data frame if the first device has the receive priority and no data to transmit, and transmitting, from the first device, a transmit priority control signal during a transmit priority control slot (Txp) corresponding to the first data frame if the first device has the transmit priority and data to transmit.