摘要:
A catalyst deterioration-determining system determines deterioration of a catalyst arranged in the exhaust passage of an internal combustion engine. An ECU is responsive to an output from an O.sub.2 sensor arranged upstream of the catalyst or outputs from O.sub.2 sensors arranged upstream and downstream of the catalyst for controlling the air-fuel ratio of a mixture supplied to the engine by means of an air-fuel ratio correction value (first air-fuel ratio control). When the engine is in a predetermined operating condition, the system effects changeover from the first air-fuel ratio control to a second air-fuel ratio control which is responsive to the output from the downstream O.sub.2 sensor for controlling the air-fuel ratio of the mixture by means of the air-fuel ratio correction value. After the changeover has been effected, a time period is measured which elapses from the time the second air-fuel ratio control causes a change in the air-fuel ratio correction value from a richer side to a leaner side or vice versa with respect to a stoichiometric air-fuel ratio to the time the output from the downstream O.sub.2 sensor is inverted from the richer side to the leaner side or vice versa with respect to the stoichiometric air-fuel ratio. It is determined that the catalyst is deteriorated, when the measured time period is shorter than the predetermined time period.
摘要:
An evaporative fuel-processing system includes a first control valve arranged in a charging passage connecting between a fuel tank and a canister for adsorbing evaporative fuel generated from the fuel tank, a second control valve arranged in a purging passage connecting between the canister and an intake passage of the engine, a third control valve arranged in an air inlet port of the canister, and a system internal pressure sensor for detecting pressure within the system. The system is checked for a leak by monitoring a value of the pressure detected by the sensor after the system is negatively pressurized by closing the third control valve and opening the second control valve. The sensor is provided at a location upstream of the first control valve, and the first control valve is closed to detect a value of the pressure or a change thereof. Abnormality determination is carried out based on the detected value of the pressure. Alternatively, all of the above valves are closed in the negatively-pressurized state of the system to detect a first amount of change in the pressure, and then the first control valve alone is opened to detect a second amount of change in the pressure. Abnormality determination can be carried out based on the first and second amounts of change in the pressure, or by comparing a value of the pressure detected when the first and second valves are closed after negative pressurization with a value of the pressure detected after the first control valve is opened.
摘要:
An evaporative fuel-processing system for an internal combustion engine, in which a first control valve is arranged across an evaporative fuel-guiding passage extending from a fuel tank to a canister, a second control valve across a purging passage extending from the canister to the intake system of the engine, and a third control valve at an air inlet port of the canister, respectively. An ECU generates operation command signals to the first to third control valves for closing or opening the same. The ECU is responsive to an output from a tank internal pressure sensor which detects pressure within the fuel tank and the operation command signals, for detecting an abnormality in operation of a predetermined one of the first to third control valves.
摘要:
A misfire-detecting system detects a misfire occurring in an internal combustion engine. A value of sparking voltage for discharging a spark plug of the engine is detected. The detected value of the sparking voltage is compared with a first predetermined value. A degree to which the detected value of the sparking voltage exceeds the first predetermined value is measured. The measured degree is compared with a second predetermined value. It is determined based upon results of the latter comparison whether or not a misfire occurred in the engine. According to a first aspect of the invention, the second predetermined reference value is set based upon detected values of operating parameters of the engine. According to a second aspect of the invention, the determination of occurrence of a misfire is inhibited when the engine is in a predetermined operating condition.
摘要:
A misfire detecting system for an internal combustion engine, including an intake pipe internal pressure detecting device for detecting an internal pressure of an intake pipe of the internal combustion engine, and a misfire detection inhibiting device for inhibiting the detection of misfire when the internal pressure of the intake pipe detected by the intake pipe internal pressure detecting device is lower than an intake pipe internal pressure in a no-load condition.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.
摘要:
An evaporative fuel processing system adapted to be capable of detecting abnormality of an evaporative emission control system for storing, in a canister, evaporative fuel from a fuel tank for holding fuel to be supplied to an internal combustion engine, and purging evaporative fuel into the intake system of the engine. A first control valve is arranged across a passage extending between the fuel tank and the canister. A second control valve is arranged across a passage extending between the canister and the intake system of the engine. A third control valve is provided for an air inlet part of the canister communicatable with the atmosphere. Through operating these control valves to open and close them, the evaporative emission control system is negatively pressurized, and abnormality of this system is detected based on the pressure detected in this negatively pressurized state thereof. Timing for carrying out abnormality determination is determined depending on conditions of the fuel tank. Before starting the whole process for abnormality diagnosis of the system evaporative fuel stored in the canister is allowed to be purged for a predetermined time period. When the temperature of fuel in the fuel tank exceeds a predetermined value, the abnormality determination is inhibited.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.
摘要:
Disclosed is an evaporative fuel purging apparatus used for an internal combustion engine. A canister having an absorbing agent for absorbing an evaporative fuel generated in a fuel tank of the internal combustion engine is provided. A drain control valve is provided on a drain port for opening the canister to the atmospheric air, and which is adapted to open and close the drain port. A purge control valve is provided on a purge passage communicating the canister to a part of an intake system, and which is adapted to purge the evaporative fuel absorbed into the canister through opening and closing the purge passage. A diagnostic device diagnoses the presence or absence of leakage in a purge system which is sealed up by closing the drain control valve and the purge control valve after pressure-reduction treatment. In the above apparatus, the drain control valve is opened after termination of the diagnosis by the diagnostic device, to open the canister to the atmospheric air through the drain port, and after an elapse of a specified time, the purge is started by opening the purge control valve. With this construction, it is possible to prevent the rapid change in the air-fuel ratio in re-starting the purge after termination of the diagnosis for the purge system, and hence to improve the stabilization of the emission and the drivability.
摘要:
An evaporative fuel processing system adapted to be capable of detecting abnormality of an evaporative emission control system for storing, in a canister, evaporative fuel generated from a fuel tank for holding fuel to be supplied to an internal combustion engine, and purging evaporative fuel into the intake system of the engine. A first control valve is arranged across a passage extending between the fuel tank and the canister. A second control valve is arranged across a passage extending between the canister and the intake system of the engine. A third control valve is provided for an air inlet port of the canister communicatable with the atmosphere. Through operating these control valves to open and close them, the evaporative emission control system is negatively pressurized, and abnormality of this system is detected based on the pressure detected in this negatively pressurized state thereof. Timing for carrying out abnormality determination is determined depending on conditions of the fuel tank. Before starting the whole process for abnormality diagnosis of the system, evaporative fuel stored in the canister is allowed to be purged for a predetermined time period. When the temperature of fuel in the fuel tank exceeds a predetermined value, the abnormality determination is inhibited.