摘要:
A soft magnetic alloy used as a radio frequency magnetic material and having high resistivity and high magnetic permeability in a high frequency band, and an inductor, a wave absorber and antenna each comprising the soft magnetic alloy. The soft magnetic alloy has a crystal phase containing Co as a main component and at least one element T selected as a primary component from Fe, Ni, Pd, Mn and Al, and having a face-centered cubic structure, a body-centered cubic structure or a mixture thereof having an average crystal grain size of 30 nm or less; and a ferromagnetic amorphous phase surrounding the crystal phase and containing at least one element M selected from Ti, Zr, Hf, Nb, Ta, Mo, W, Y and rare earth elements, O, N, C, B, at least one oxide of element M, Fe and element T.
摘要:
A soft magnetic alloy thin film includes a fine crystalline phase and an amorphous phase. The fine crystalline phase includes an average crystalline grain size of 10 nm or less in diameter and has body-centered cubic structure mainly composed of Fe. The amorphous phase has a nitrogen (N) compound as the main composition and occupies at least 50% of the structure of the thin film. An element M is incorporated at least in the amorphous phase, and includes at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, W, and rare earth metal elements. A plane-type magnetic device is made using this thin film.
摘要:
A soft magnetic alloy thin film includes a fine crystalline phase and an amorphous phase. The fine crystalline phase includes an average crystalline grain size of 10 nm or less in diameter and has body-centered cubic structure mainly composed of Fe. The amorphous phase has a nitrogen (N) compound as the main composition and occupies at least 50% of the structure of the thin film. An element M is incorporated at least in the amorphous phase, and includes at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, W, and rare earth metal elements. A plane-type magnetic device is made using this thin film.
摘要:
A thin magnetic element comprising a coil pattern formed on at least one side of a substrate and a thin magnetic film formed on the coil pattern, wherein, assuming that the thickness and width of a coil conductor constituting the coil pattern are t and a, respectively, an aspect ratio t/a of the coil conductor satisfies the relationship 0.035≦t/a≦0.35, and the thin magnetic film has a resistivity of 400 &mgr;&OHgr;cm or more.
摘要翻译:一种薄磁性元件,包括形成在衬底的至少一侧的线圈图案和形成在线圈图案上的薄磁膜,其中,假定构成线圈图案的线圈导体的厚度和宽度分别为t和a ,线圈导体的纵横比t / a满足关系0.035 <= t / a <= 0.35,薄磁膜的电阻率为400μΩEG·cm以上。
摘要:
A soft magnetic alloy thin film includes a fine crystalline phase and an amorphous phase. The fine crystalline phase includes an average crystalline grain size of 10 nm or less in diameter and has body-centered cubic structure mainly composed of Fe. The amorphous phase has a nitrogen (N) compound as the main composition and occupies at least 50% of the structure of the thin film. An element M is incorporated at least in the amorphous phase, and includes at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, W, and rare earth metal elements. A plane-type magnetic device is made using this thin film.
摘要:
A thin magnetic element which comprises a coil pattern formed on at least one side of a substrate and a thin magnetic film formed on the coil pattern, wherein:said thin magnetic film is for++med to a thickness of 0.5 .mu.m or greater but 8 .mu.m or smaller;and at least one of the following conditions, that is, assuming that the thickness and width of a coil conductor constituting the coil pattern are t and a, respectively, an aspect ratio t/a of the coil conductor satisfies the following relationship: 0.035.ltoreq.t/a.ltoreq.0.35;and assuming that the width of the conductor constituting the coil pattern is a and the distance between the mutually adjacent coil conductors in the coil pattern is b, the following relationship: 0.2.ltoreq.a/(a+b) is satisfied.
摘要:
A method for making a Fe-based soft magnetic alloy where an alloy melt is injected onto a moving cooling unit to form an amorphous alloy ribbon. The alloy melt contains Fe as a main component, B and at least one metallic element M selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, the composition of the alloy melt being selected such that the resulting amorphous alloy ribbon is characterized by a first crystallization temperature at which fine grain bcc Fe crystallites precipitate, and a second crystallization temperature at which a compound phase containing Fe--B and/or Fe--M precipitates. The amorphous alloy ribbon is then annealed at a temperature which is higher that the first crystallization temperature and less than the second crystallization temperature for an annealing time in the range of 0 minutes to 20 minutes.
摘要:
An alloy composition of FeaBbSicPxCyCuz. Parameters meet the following conditions: 79≦a≦86 atomic %; 5≦b≦13 atomic %; 0≦c≦8 atomic %; 1≦x≦8 atomic %; 0≦y≦5 atomic %, 0.4≦z≦1.4 atomic %; and 0.08≦z/x≦0.8. Or, parameters meet the following conditions: 81≦a≦86 atomic %; 6≦b≦10 atomic %; 2≦c≦8 atomic %; 2≦x≦5 atomic %; 0≦y≦4 atomic %; 0.4≦z≦1.4 atomic %, and 0.08≦z/x≦0.8.
摘要翻译:FeaBbSicPxCyCuz的合金组成。 参数满足以下条件:79 @ a @ 86 atom%; 5 @ b @ 13原子%; 0 @ c @ 8 atom%; 1 @ x @ 8原子%; 0 @ y @ 5原子%,0.4 @ z @ 1.4原子%; 和0.08 @ z / x @ 0.8。 或者,参数满足以下条件:81 @ a @ 86原子%; 6 @ b @ 10原子%; 2 @ c @ 8 atom%; 2 @ x @ 5原子%; 0 @ y @ 4 atom%; 0.4 @ z @ 1.4原子%和0.08 @ z / x @ 0.8。
摘要:
For providing a magnetostrictive film that can exhibit high magnetostrictive properties in the vicinity of zero magnetic field and their manufacturing methods, a magnetostrictive film thermal sprayed on an object under test includes a metallic glass film subjected to thermal processing at a temperature lower than the glass transition temperature and not lower than the Curie point, and shows a linearity between the magnetic field and the magnetostriction in at least a part of the magnetic field from −15 kA/m to +15 kA/m (both inclusive).
摘要:
The present invention provides a metallic glass having a chemical composition represented by any one of the following formulae (1) to (3): FemPtnSixByPz (wherein,20