摘要:
At both sides of an element portion, a first hard bias layer having a higher residual magnetization Mr and a second hard bias layer having a higher coercive force Hc are deposited in that order from the bottom with one end of the first hard bias layer being closed close to a free magnetic layer. A film thickness ratio of the first hard bias layer in a whole hard bias layer is from 35% to 75%. This stabilizes magnetization in the free magnetic layer to reduce asymmetry, thus enabling improvement in stability of reproducing characteristics including noise suppression.
摘要:
a CCP-type thin-film magnetic head and a manufacturing method thereof are provided. The CCP-type thin-film magnetic head includes a thin-film magnetic head element formed between the upper shield layer and the lower shield layer, and a side fill gap layer securing the insulating property, which is formed from both end faces of the thin-film magnetic head element, wherein a top surface of the lower shield layer is formed in a non-flat surface having a convex portion disposed at a center in a track width direction and a concave portion disposed at both sides in a track width direction of the convex portion, the thin-film magnetic head element is formed on the convex portion, and an buried gap layer contacting the side fill gap layer is formed in the concave portion.
摘要:
A thin magnetic element comprising a coil pattern formed on at least one side of a substrate and a thin magnetic film formed on the coil pattern, wherein, assuming that the thickness and width of a coil conductor constituting the coil pattern are t and a, respectively, an aspect ratio t/a of the coil conductor satisfies the relationship 0.035≦t/a≦0.35, and the thin magnetic film has a resistivity of 400 &mgr;&OHgr;cm or more.
摘要翻译:一种薄磁性元件,包括形成在衬底的至少一侧的线圈图案和形成在线圈图案上的薄磁膜,其中,假定构成线圈图案的线圈导体的厚度和宽度分别为t和a ,线圈导体的纵横比t / a满足关系0.035 <= t / a <= 0.35,薄磁膜的电阻率为400μΩEG·cm以上。
摘要:
A soft magnetic alloy thin film includes a fine crystalline phase and an amorphous phase. The fine crystalline phase includes an average crystalline grain size of 10 nm or less in diameter and has body-centered cubic structure mainly composed of Fe. The amorphous phase has a nitrogen (N) compound as the main composition and occupies at least 50% of the structure of the thin film. An element M is incorporated at least in the amorphous phase, and includes at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, W, and rare earth metal elements. A plane-type magnetic device is made using this thin film.
摘要:
A lower shield layer has a substantially flat shape, and an upper shield layer has a front portion and a rear portion, where the front portion is disposed closer to the lower shield layer than the rear portion. A lower conductive electrode and an upper conductive electrode are disposed between the lower shield layer and the upper shield layer. The lower conductive electrode is electrically connected to the lower shield layer, and the upper conductive electrode is electrically connected to the upper shield layer. Since the lower and upper conductive electrodes are disposed between the upper and lower shield layers, each of the lower shield layer and the upper shield layer may be formed to have a small area and a simple shape.
摘要:
In a coating portion forming method of a coil spring, the method includes steps of heating the coil spring, dipping the heated coil spring in a thermosetting resin solution, and reheating the coil spring which is pulled up from the thermosetting resin solution.
摘要:
At both sides of an element portion, a first hard bias layer having a higher residual magnetization Mr and a second hard bias layer having a higher coercive force Hc are deposited in that order from the bottom with one end of the first hard bias layer being closed close to a free magnetic layer. A film thickness ratio of the first hard bias layer in a whole hard bias layer is from 35% to 75%. This stabilizes magnetization in the free magnetic layer to reduce asymmetry, thus enabling improvement in stability of reproducing characteristics including noise suppression.
摘要:
A lower shield layer has a substantially flat shape, and an upper shield layer has a front portion and a rear portion, where the front portion is disposed closer to the lower shield layer than the rear portion. A lower conductive electrode and an upper conductive electrode are disposed between the lower shield layer and the upper shield layer. The lower conductive electrode is electrically connected to the lower shield layer, and the upper conductive electrode is electrically connected to the upper shield layer. Since the lower and upper conductive electrodes are disposed between the upper and lower shield layers, each of the lower shield layer and the upper shield layer may be formed to have a small area and a simple shape.
摘要:
There is provided a magnetic detecting element and a method of manufacturing the same. An intermediate layer and a corrosion preventing layer are laminated on a free magnetic layer. The corrosion preventing layer prevents the free magnetic layer from corroding due to reactive ion etching. Therefore, a laminator can be correspondingly formed in a predetermined shape, and the free magnetic layer can be prevented from corroding. As a result, it is possible to manufacture a magnetic detecting element having excellent reproduction output.
摘要:
A CPP giant magnetoresistive head includes a lower shield layer; an upper shield layer; and a giant magnetoresistive element (GMR) between the lower shield layer and the upper shield layer. The GMR includes a nonmagnetic material layer; a pinned magnetic layer; and a free magnetic layer. The pinned layer and the free layer are laminated with the nonmagnetic layer provided therebetween. A current flows perpendicularly to a film plane of the GMR, the pinned magnetic layer extends in the height direction longer than in a track-width direction and includes a first portion in the GMR. The first portion is disposed above or below the nonmagnetic layer and the free layer. A second portion is behind the nonmagnetic layer and the free layer in the height direction. The first and second portions are in the same plane. The width of the pinned layer in the track-width direction in the first portion is greater than that in the second portion.