摘要:
The present invention provides a method for controlling the combustion parameters of an internal combustion engine with an oxygen sensor prior to a closed loop operating condition. If the output voltage of the oxygen sensor indicates a lean air to fuel ratio condition, the percent alcohol content is incremented to a limit based on an E85 possibility curve. If the voltage output of the oxygen sensor indicates a rich air to fuel ratio condition, the percent alcohol content is decremented to a limit based on an E0 possibility curve. After the end of the fuel blending period or when the internal combustion engine reaches a closed loop mode, control of the combustion parameters of the internal combustion engine are returned to normal regime oxygen sensor feedback control.
摘要:
A method is provided for triggering a system for learning the percent alcohol content of a fuel used in a motor vehicle capable of operating on more than one type of fuel. The fuel composition learning system is triggered each time fuel is added to the vehicle's fuel tank, each time the engine is started when the fuel volume in the fuel tank falls below a given value or if a fuel level sending unit malfunction has been detected. The fuel composition learning system is also triggered if an error is detected in the value of the learned percent alcohol content of the fuel.
摘要:
The present invention provides a method for controlling combustion parameters of an internal combustion engine during wide open throttle or part throttle enrichment operation. Oxygen sensor rich and lean counts above and below a stoichiometric air/fuel ratio are counted during an injector pulse width period while a fuel concentration determination is being made at wide open throttle and part throttle enrichment. The ratio of lean counts to rich counts is compared to a calibratable value for incrementing the fuel concentration delivered to the internal combustion engine. The fuel concentration is further controlled if a boil-off condition is detected.
摘要:
The present invention provides a flexible fuel compensation system for determining the percent alcohol content of fuel in a flexible fueled vehicle at the instance of fueling and in an open loop operating mode. According to the invention, two estimated percent alcohol content values are calculated based on the old fuel mixture's alcohol content and two fueling possibilities. A first value is calculated for the possibility that E85 fuel was added to the tank and a second value is calculated for the possibility that E0 fuel was added to the tank. If the inferred ethanol content increases above a positive threshold during closed loop operation, the system assumes that E85 fuel has been added to the tank. Conversely, if the inferred ethanol content decreases below a negative threshold, the system assumes that E0 fuel was added to the tank. Accordingly, if the vehicle is shut down before a more accurate ethanol content determination is complete, the inferred ethanol content follows either the first or second estimated alcohol content value until the system reaches a closed loop operating condition.
摘要:
The present invention provides a flexible fuel compensation system for determining the percent alcohol content of fuel in a flexible fueled vehicle at the instance of fueling and in an open loop operating mode. According to the invention, two estimated percent alcohol content values are calculated based on the old fuel mixture's alcohol content and two fueling possibilities. A first value is calculated for the possibility that E85 fuel was added to the tank and a second value is calculated for the possibility that E0 fuel was added to the tank. If the inferred ethanol content increases above a positive threshold during closed loop operation, the system assumes that E85 fuel has been added to the tank. Conversely, if the inferred ethanol content decreases below a negative threshold, the system assumes that E0 fuel was added to the tank. Accordingly, if the vehicle is shut down before a more accurate ethanol content determination is complete, the inferred ethanol content follows either the first or second estimated alcohol content value until the system reaches a closed loop operating condition.
摘要:
The present invention provides a flexible fuel compensation system for controlling operating parameters of an internal combustion engine based on a learned value of the percent alcohol content of the fuel using an oxygen feedback system. The methodology determines a fuel composition multiplier based on the percent alcohol content and implements gasoline operating parameters for the internal combustion engine if the fuel composition multiplier is less than a first threshold value, mixed gasoline/alcohol operating parameters if the fuel composition multiplier is greater than the first threshold value, and high concentration alcohol operating parameters if the fuel composition multiplier is greater than a second threshold value for a number of comparison checks. After a predetermined period, the fuel composition multiplier is updated and re-compared to the first and second thresholds and the appropriate one of the aforementioned operating parameters is implemented. A third update of the fuel composition multiplier is made if the determined fuel composition multiplier is less than the actual percent alcohol content of the fuel by more than a given amount.
摘要:
The present invention provides a method of compensating for a boil-off condition in a flexible fuel compensation control system for a flexible fueled vehicle with a PCV solenoid. The methodology determines both the presence and extent of boil-off corruption and handles closed loop controls normally as if no boil-off corruption exists. The methodology also determines the amount of boil-off corruption being introduced through the PCV system and updates the flexible fueled vehicle fueling during a blend change between ethanol and gasoline. Additionally, the methodology determines when boil-off corruption is no longer influencing closed loop fuel control.
摘要:
A method is provided for checking the function of a fuel composition sensor and for learning the percent alcohol content of a fuel used in a motor vehicle capable of operating on more than one type of fuel, as an alternative to a fuel composition sensor. The present invention improves the reliability of a motor vehicle utilizing a fuel composition sensor by allowing vehicle operation to continue uninterrupted, such as when a short or open condition exists within the sensor. The method first determines whether conditions are such that the percent alcohol content of a fuel should be "learned". If conditions are appropriated, then necessary engine operating conditions are first initialized. The oxygen sensor output signal is checked to determine whether the engine is operating too rich or lean. The value of percent alcohol content stored in the engine control unit's memory is modified in the direction of stoichiometric engine operation. In this manner, the engine is able to "learn" the percent alcohol content of the fuel and make the appropriate adjustments to operating parameters.
摘要:
A flexible fuel compensation system including a method of methanol boil-off compensation. The methanol boil-off compensation method includes an initialization routine, a run mode routine and a shutdown routine. The method will monitor a plurality of flags to determine when the methanol boil-off compensation should be used.
摘要:
A method of controlling a vapor storage canister for a purge control system of an internal combustion engine is provided. The method includes the steps of determining if predetermined conditions are right for controlling a vapor storage canister and maintaining normal fuel feedback operation if the predetermined conditions are not right for controlling the vapor storage canister. The method also includes the steps of determining if the vapor storage canister is loaded if the predetermined conditions are right for controlling the vapor storage canister, maintaining normal fuel feedback operation if the vapor storage canister is not loaded and modifying a duty cycle of a purge solenoid to maximize purge if the vapor storage canister is loaded. The method further includes the steps of updating a loaded canister total purge multiplier and using the total purge multiplier to vary the amount of fuel being delivered to the internal combustion engine.