摘要:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
摘要:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
摘要:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
摘要:
The present invention relates to a light source package structure, which comprises: an accommodating space for accommodating a light source, a first refraction surface, and at least a second refraction surface. The first refraction surface receives light discharging from the light source while refracting the same to form a first refracting light, the upper part of the first refraction surface further comprising a refracting structure for refracting the light emitted from the light source. The second refraction surface receives and refracts the first refracting light to form a discharging light being emitted out of the light source package structure. Wherein, an included angle is formed between the normal vector of a portion of the second refraction surface and the central axis of the light source package structure. It is noted that the aforesaid package structure can be used in various packaging for improving refraction. In a preferred embodiment, a light source of light emitting diode (LED) is packaged by the light source package structure of the invention for enabling the light emitted from the LED to be discharged out of the package structure by a large angle after being refracted multiple times, so that the LED package structure can be adopted as a flat light source for diverse purpose applied in industry.
摘要:
The present invention discloses an optical film with array of microstructures, having a first optical surface and a second optical surface for receiving an incident light. The optical film comprises at least a transparent microstructure formed on the first optical surface, wherein the microstructure further comprises: a first side for scattering the incident light; and a second side for collimating the incident light.
摘要:
The present invention discloses a light modulation element, having a first optical surface and a second optical surface receiving an incident light, the light modulation element comprising: at least a transparent diffusion unit, for scattering the incident light, each being placed on the first optical surface; and at least a transparent collimation unit, for collimating the incident light, each being formed on top of the diffusion unit.
摘要:
The present invention discloses an optical element, having a first optical surface and a second optical surface for receiving an incident light, the optical element comprising: at least a transparent diffusion unit, for scattering the incident light, each being placed on the first optical surface; and at least a transparent collimation unit, for collimating the incident light, each being place on the first optical surface abutted and adjacent to the diffusion unit in an alternative manner.
摘要:
The present invention discloses an optical film with array of microstructures, having a first optical surface and a second optical surface for receiving an incident light. The optical film comprises at least a transparent microstructure formed on the first optical surface, wherein the microstructure further comprises: a first side for scattering the incident light; and a second side for collimating the incident light.
摘要:
A direct backlight module is disclosed, which comprises: a frame; at least a light source, being arranged in the frame; a diffuser, being disposed over the frame; and at least an optical film, being disposed over the diffuser, comprising a substrate having a top surface and a bottom surface; wherein a diffusion unit and a collimation unit are formed on the top surface while using the diffusion unit for diffusing light incident to the bottom surface and the collimation unit for collimating light incident to the bottom surface. The direct backlight module of the invention is capable of enhancing luminous efficiency, and further, it has a comparatively simple structure so that the manufacturing cost of the optical film can be reduced.
摘要:
A direct backlight module is disclosed, which comprises: a frame; at least a light source, being arranged in the frame; a diffuser, being disposed over the frame; and at least an optical film, being disposed over the diffuser, comprising a substrate having a top surface and a bottom surface; wherein a diffusion unit and a collimation unit are formed on the top surface while using the diffusion unit for diffusing light incident to the bottom surface and the collimation unit for collimating light incident to the bottom surface. The direct backlight module of the invention is capable of enhancing luminous efficiency, and further, it has a comparatively simple structure so that the manufacturing cost of the optical film can be reduced.