摘要:
The liquid crystal display device of the invention includes a plurality of pixels each having a first electrode, a second electrode facing the first electrode, and a vertically aligned liquid crystal layer placed between the first and second electrodes. The device further includes stripe-shaped first alignment regulating means having a first width placed in the first electrode side of the liquid crystal layer; stripe-shaped second alignment regulating means having a second width placed in the second electrode side of the liquid crystal layer; and a stripe-shaped liquid crystal region having a third width defined between the first and second regulating means. The third width is in a range between 2 μm and 15 μm.
摘要:
A liquid crystal display device includes a plurality of pixels each connected to a signal line via a switching element. Each pixel includes first and second sub-pixels having voltage vs. luminance characteristics different from each other with respect to a signal voltage supplied from the signal line. A threshold signal voltage of the first sub-pixel is lower than that of the second sub-pixel. The pixels form color display pixels which are red, green pixel and blue pixels. Where the area ratio of the first sub-pixel in each of the red, green and blue pixels is SR1, SG1 and SB1, and the ratio of the lighting-up time period of the first sub-pixel of each of the red, green and blue pixels in one vertical scanning period is TR1, TG1 and TB1, the relationship of (SR1×TR1)>(SG1×TG1)>(SB1×TB1) holds.
摘要:
While securing adequate response characteristics and brightness of an orientation-divided vertical alignment type liquid crystal display device, variations in display quality that are ascribable to variations in the pixel structure are suppressed. A liquid crystal display device according to the present invention includes a plurality of pixels each having a first electrode, a second electrode opposing the first electrode, and a vertical-alignment type liquid crystal layer provided between the first electrode and the second electrode, including: a rib provided on the first electrode side of the liquid crystal layer, and a slit provided in the second electrode of the liquid crystal layer. The thickness of the liquid crystal layer is no more than 2.5 μm, and the width of the rib is no less than 5 μm and no more than 13 μm.
摘要:
A liquid crystal display device includes a plurality of pixels each connected to a signal line via a switching element. Each pixel includes first and second sub-pixels having voltage vs. luminance characteristics different from each other with respect to a signal voltage supplied from the signal line. A threshold signal voltage of the first sub-pixel is lower than that of the second sub-pixel. The pixels form color display pixels which are red, green pixel and blue pixels. Where the area ratio of the first sub-pixel in each of the red, green and blue pixels is SR1, SG1 and SB1, and the ratio of the lighting-up time period of the first sub-pixel of each of the red, green and blue pixels in one vertical scanning period is TR1, TG1 and TB1, the relationship of (SR1×TR1)>(SG1×TG1)>(SB1×TB1) holds.
摘要:
The liquid crystal display device of the invention includes a plurality of pixels each having a first electrode, a second electrode facing the first electrode, and a vertically aligned liquid crystal layer placed between the first and second electrodes. The device further includes stripe-shaped first alignment regulating means having a first width placed in the first electrode side of the liquid crystal layer; stripe-shaped second alignment regulating means having a second width placed in the second electrode side of the liquid crystal layer; and a stripe-shaped liquid crystal region having a third width defined between the first and second regulating means. The third width is in a range between 7 μm and 12 μm.
摘要:
The liquid crystal display device of this invention includes a plurality of picture element regions each defined by a first electrode provided on a face of a first substrate facing a liquid crystal layer and a second electrode provided on a second substrate so as to oppose the first electrode via the liquid crystal layer sandwiched therebetween. In each of the picture element regions, the first electrode has a plurality of openings and a solid portion, the liquid crystal layer is in a vertical orientation state when no voltage is applied between the first electrode and the second electrode, and when a voltage is applied between the first electrode and the second electrode, a plurality of liquid crystal domains each in a radially-inclined orientation state are respectively formed in the plurality of openings and the solid portion by inclined electrode fields generated at respective edge portions of the openings of the first electrode.
摘要:
The liquid crystal display device of the present invention includes a first substrate, a second substrate, and a vertical alignment type liquid crystal layer provided between the first substrate and the second substrate, and includes a plurality of picture element regions each defined by a first electrode provided on one side of the first substrate that is closer to the liquid crystal layer and a second electrode provided on the second substrate so as to oppose the first electrode via the liquid crystal layer. The first substrate includes a first orientation-regulating structure in each of the plurality of picture element regions, the first orientation-regulating structure exerting an orientation-regulating force so as to form a plurality of liquid crystal domains in the liquid crystal layer, each of the liquid crystal domains taking a radially-inclined orientation in the presence of an applied voltage. The second substrate includes a second orientation-regulating structure in a region corresponding to at least one of the plurality of liquid crystal domains, the second orientation-regulating structure exerting an orientation-regulating force for orienting liquid crystal molecules in at least one liquid crystal domain into a radially-inclined orientation at least in the presence of an applied voltage.
摘要:
The present invention provides a liquid crystal display device having a high display quality. The liquid crystal display device displays an image by applying a voltage by a first electrode and a second electrode across a liquid crystal layer which takes a vertical alignment in the absence of an applied voltage. The first electrode includes a lower conductive layer, a dielectric layer covering at least a portion of the lower conductive layer, and an upper conductive layer provided on one side of the dielectric layer which is closer to the liquid crystal layer. The upper conductive layer includes a first opening, and the lower conductive layer is provided so as to oppose at least a portion of the first opening via the dielectric layer.
摘要:
An alignment-divided vertical alignment liquid crystal display device permitting high-definition moving image display when OS driving is adopted. The device has a plurality of pixels each having a first electrode, a second electrode facing the first electrode, and a vertical alignment liquid crystal layer placed between the first and second electrodes. The device includes: first alignment regulating structure having a first width W1 placed in the first electrode side of the liquid crystal layer; second alignment regulating structure having a second width placed in the second electrode side of the liquid crystal layer; and a liquid crystal region having a third width defined between the first and second alignment regulating structures. The third width W3 is in a range between 2 μm and 14 μm in certain embodiments.
摘要:
The liquid crystal display device of this invention includes a plurality of picture element regions each defined by a first electrode provided on a face of a first substrate facing a liquid crystal layer and a second electrode provided on a second substrate so as to oppose the first electrode via the liquid crystal layer sandwiched therebetween. In each of the picture element regions, the first electrode has a plurality of openings and a solid portion, the liquid crystal layer is in a vertical orientation state when no voltage is applied between the first electrode and the second electrode, and when a voltage is applied between the first electrode and the second electrode, a plurality of liquid crystal domains each in a radially-inclined orientation state are respectively formed in the plurality of openings and the solid portion by inclined electrode fields generated at respective edge portions of the openings of the first electrode.