摘要:
The present invention provides an improved hydrogen storage alloy of Ti--V--Ni system having a body-centered cubic structure. The alloy is of the general formula Ti.sub.x (V.sub.a Cr.sub.1-a).sub.1-x M.sub.b Ni.sub.c, wherein M represents at least one element of La and Ce or a mischmetal, and wherein 0.5.ltoreq.a.ltoreq.0.95, 0.01.ltoreq.b.ltoreq.0.1, 0.1.ltoreq.c.ltoreq.0.6, and 0.2.ltoreq.x.ltoreq.0.4; or Ti.sub.x V.sub.y M.sub.z Ni.sub.1-x-y-z, wherein M represents at least one element selected from the group consisting of Co, Fe, Cu, and Ag, and wherein 0.2.ltoreq.x.ltoreq.0.4, 0.3.ltoreq.y.ltoreq.0.7, 0.1.ltoreq.z.ltoreq.0.3, and 0.6.ltoreq.x+y+z.ltoreq.0.95.
摘要翻译:本发明提供了具有体心立方结构的Ti-V-Ni体系的改进的储氢合金。 该合金具有通式Tix(VaCr1-a)1-xMbNic,其中M表示La和Ce中的至少一种元素或混合稀土金属,并且其中0.5≤a≤0.95,0.01≤b< /=0.1,0.1≤n≤0.6,0.2≤x≤0.4; 或TixVyMzNi1-xyz,其中M表示选自Co,Fe,Cu和Ag中的至少一种元素,其中0.2≤x≤0.4,0.3≤y≤0.7,0.1 = z = 0.3,而0.6 x + y + z <= 0.95。
摘要:
Addition of Mo to a Zr--Mn--V--Cr--Co--Ni, a Zr--Mn--Cr--Co--Ni hydrogen storage alloy, or those including Ti as substitution for Zr improves high-rate discharge characteristics of the hydrogen storage alloy at low temperatures. The hydrogen storage alloy is of the general formula ZrMn.sub.a V.sub.b Mo.sub.c Cr.sub.d Co.sub.e Ni.sub.f, wherein 0.4.ltoreq.a.ltoreq.0.8, 0.ltoreq.b
摘要:
The present invention provides a hydrogen storage alloy electrode high in capacity and exceptional in cycle life characteristic by improving a conventional V-based hydrogen storage alloy of a body-centered cubic structure. The electrode comprises particles of a hydrogen storage alloy represented by the general formula V.sub.1-a-b-c-d Ti.sub.a Cr.sub.b M.sub.c L.sub.d, wherein M is at least one element selected from the group consisting of Mn, Fe, Co, Cu, Nb, Zn, Zr, Mo, Ag, Hf, Ta, W, Al, Si, C, N, P and B, and L is at least one element selected from the group consisting of Y and rare earth elements, and 0.2.ltoreq.a.ltoreq.0.5, 0.1.ltoreq.b.ltoreq.0.4, 0.ltoreq.c.ltoreq.0.2 and 0
摘要:
A hydrogen storage alloy electrode having a high capacity and excellent cycle characteristics is provided. The electrode is made from particulate active material comprising a hydrogen storage alloy of body-centered cubic crystal structure or body-centered tetragonal crystal structure, said hydrogen storage alloy being represented by the general formula TiaM1bCrcM2dLe, wherein M1 is at least one element selected from the group consisting of Nb and Mo; M2 is at least one element selected from the group consisting of Mn, Fe, Co, Cu, V, Zn, Zr, Ag, Hf, Ta, W, Al, Si, C, N, P and B; L is at least one element selected from the group consisting of rare-earth elements and Y; 0.2≦a≦0.7; 0.01≦b≦0.4; 0.1≦c≦0.7; 0≦d≦0.3; 0≦e≦0.03; and a+b+c+d+e=1.0, and said particulate active material having a Ti—Ni system alloy phase in the surface portion thereof.
摘要翻译:提供具有高容量和优异的循环特性的储氢合金电极。 电极由包含体心立方晶体结构或体心四方晶体结构的储氢合金的粒状活性物质制成,所述储氢合金由通式TiaM1bCrcM2dLe表示,其中M1为选自 由Nb和Mo组成的组; M2是选自Mn,Fe,Co,Cu,V,Zn,Zr,Ag,Hf,Ta,W,Al,Si,C,N,P和B中的至少一种元素; L是选自由稀土元素和Y组成的组中的至少一种元素; 0.2 <= a <= 0.7; 0.01 <= b <= 0.4; 0.1 <= c <= 0.7; 0 <= d <= 0.3; 0 <= e <= 0.03; a + b + c + d + e = 1.0,所述粒状活性物质在其表面部分具有Ti-Ni系合金相。
摘要:
The invention relates to a new method of manufacturing a sealed rechargeable alkaline battery including metal oxides as positive electrode active materials and a hydrogen absorbing alloy as a negative electrode material. The basic principle of the method is that, instead of the conventional electrochemical formation, the property of a hydrogen absorbing alloy is utilized to cause the negative electrode to absorb hydrogen to thereby achieve precharged portions within the negative electrode having a relatively larger capacity as compared with the positive electrode. Regardless of the kind of positive electrode, the method of the invention insures a broad freedom in the capacity appropriation between the positive and negative electrodes.
摘要:
A method for manufacturing hydrogen storage alloy particles comprises steps of obtaining a melt of the hydrogen storage alloy and pulverizing the hydrogen storage alloy by water atomizing process, whereby the melt is pulverized by contacting or colliding with high-speed jetting thereto to be dispersed in the form of solidified fine particles. By employing an aqueous solution of hypophosphorous acid or an alkali aqueous solution in place of water during the water atomizing process, or by etching the oxide films once formed on the surface of the hydrogen storage alloy particles with an aqueous solution of a strong acid, the thickness of the oxide film can be made thinner, and thus a high discharge capacity of a battery configured with a negative electrode comprising the alloy particles can be realized.
摘要:
A hydrogen storage alloy for negative electrodes in an alkaline storage battery is disclosed. The alloy is represented by the general formula MmNi.sub.x M.sub.y, wherein Mm is a misch metal or a mixture of rare earth elements, and M is at least one element selected from the group consisting of Al, Mn, Co, Cu, Fe, Cr, Zr, Ti and V and wherein 5.0.gtoreq.x +y.gtoreq.5.5, and has a microstructure comprising a phase composed of a crystal structure of CaCu.sub.5 type and is capable of absorbing and desorbing hydrogen in a reversible manner, and at least one phase consisting mainly of an element or elements other than Mm, and incapable of storing hydrogen.
摘要:
The present invention provides a method for detecting a fully charged condition of a secondary battery by which the fully charged condition of a secondary battery can be detected accurately and deterioration in battery characteristic due to overcharging can be restrained irrespective of the charging mode and the surroundings, without the need for a special battery structure. In the method, pulse vibrations generated inside a secondary battery being charged are detected, and when the obtained characteristic value of the pulse vibrations, for example, incidence of generation of the vibrations reaches a predetermined value, the secondary battery is determined to be in fully charged condition.
摘要:
A positive electrode active material and a positive electrode for an alkaline storage battery are disclosed which exhibit high charge efficiency at a high temperature. The positive electrode active material comprises particles formed by agglomeration of crystals of nickel hydroxide active material, at least the surface layer of the particles containing a solid solution nickel hydroxide with manganese incorporated therein. The solid solution is present as crystals growing on the crystal surface of said nickel hydroxide active material and/or crystals independent of crystals of the nickel hydroxide active material. The content of manganese in the solid solution is at least one mole percent on the whole metal ions in the solid solution and not higher than 10 mole percent on the combined total amount of the metal ions in the nickel hydroxide active material and the solid solution. The positive electrode for an alkaline storage battery contains the above-mentioned active material and a compound of at least one element selected from the group consisting of Ca, Sr, Ba, Cu, Ag, Cd, Y and Yb.
摘要:
The invention provides a nonaqueous electrolyte secondary battery which employs, as a negative electrode active material, a carbide containing an alkali metal in a charged stage. The carbide used is an ionic bond type carbide, a covalent bond type carbide, or an intermetallic compound type carbide. The ionic bond type carbide is exemplified as Na.sub.2 C.sub.2, K.sub.2 C.sub.2, Cu.sub.2 C.sub.2, VC.sub.2, and the like. The covalent bond type carbide is exemplified as Cr.sub.4 C, and the like. The intermetallic compound type carbide is exemplified as Mn.sub.3 C, Mn.sub.23 C.sub.6, Mn.sub.7 C.sub.3, Fe.sub.2 C, FeC, Ni.sub.3 C, and the like. A highly reliable nonaqueous electrolyte secondary battery with a high energy density and excellent cycle life characteristics can be obtained.
摘要翻译:本发明提供一种非水电解质二次电池,其在带电阶段中使用含有碱金属的碳化物作为负极活性物质。 所使用的碳化物是离子键型碳化物,共价键型碳化物或金属间化合物型碳化物。 离子键型碳化物示例为Na 2 C 2,K 2 C 2,Cu 2 C 2,VC 2等。 共价键式碳化物例如为Cr 4 C等。 作为Mn3C,Mn23C6,Mn7C3,Fe2C,FeC,Ni3C等,可列举出金属间化合物型碳化物。 可以获得具有高能量密度和优异的循环寿命特性的高度可靠的非水电解质二次电池。