摘要:
A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
摘要:
A system and method for detecting a road curve as a vehicle approaches the curve, automatically providing road curvature information and controlling vehicle speed. The system uses a locating device and a map database to know the vehicle's position. Depending on the speed of the vehicle, the system generates a curvature profile for different curvature data points at or around the curve in front of the vehicle. The system then generates a desired speed profile for the curvature points. The desired speed profile and the actual vehicle speed are compared to determine whether the vehicle is traveling too fast for the target speed at each profile point. The acceleration computation can be enhanced by providing a driver cornering mode input that the vehicle operator can select based on how aggressively the driver wants the system to act to slow down the vehicle.
摘要:
A system for lane centering control for a vehicle having a user-operable steering device is disclosed. The system includes a set of sensors for sensing the vehicle speed, yaw rate, and steering device angle, a target path tracker configured for tracking the target path of the vehicle, a processor responsive to the set of sensors for predicting the path of the vehicle, a controller responsive to the set of sensors, the target path tracker, and the processor, and productive of a lane centering control signal, and an active front steering actuator responsive to the control signal and productive of steering assistance to the steering device. The controller includes a processing circuit responsive to executable instructions for producing the steering assistance to the steering device to reduce a difference between the predicted path and the target path, thereby serving to maintain lane centering of the vehicle.
摘要:
A system and method for detecting a road curve as a vehicle approaches the curve, automatically providing road curvature information and controlling vehicle speed. The system uses a locating device and a map database to know the vehicle's position. Depending on the speed of the vehicle, the system generates a curvature profile for different curvature data points at or around the curve in front of the vehicle. The system then generates a desired speed profile for the curvature points. The desired speed profile and the actual vehicle speed are compared to determine whether the vehicle is traveling too fast for the target speed at each profile point. The acceleration computation can be enhanced by providing a driver cornering mode input that the vehicle operator can select based on how aggressively the driver wants the system to act to slow down the vehicle.
摘要:
A system for lane centering control for a vehicle having a user-operable steering device is disclosed. The system includes a set of sensors for sensing the vehicle speed, yaw rate, and steering device angle, a target path tracker configured for tracking the target path of the vehicle, a processor responsive to the set of sensors for predicting the path of the vehicle, a controller responsive to the set of sensors, the target path tracker, and the processor, and productive of a lane centering control signal, and an active front steering actuator responsive to the control signal and productive of steering assistance to the steering device. The controller includes a processing circuit responsive to executable instructions for producing the steering assistance to the steering device to reduce a difference between the predicted path and the target path, thereby serving to maintain lane centering of the vehicle.
摘要:
A method to assist steering of a vehicle equipped with an active steering system when operating in a reverse direction is provided. The method comprises monitoring vehicle operating characteristics and an operator steering input. Boundaries of a target region and a reference point are determined. A target steering angle range is calculated based upon the reference point and the target location. A controlled steering angle of the active steering system is corrected when the operator steering input is outside the target steering angle range. An aspect of the invention included determining the reference point comprising a point of intersection of a first vector and a second vector, the first vector parallel to and passing through a centerline of a rear axle of the vehicle and the second vector perpendicular to and passing through a centerline of an inside front steerable wheel of the vehicle.
摘要:
A vehicle-trailer back-up control system that employs an active front steer sub-system. The system includes a smart hitch controller that receives a vehicle speed signal and a hand-wheel angle signal, and calculates a hitch angle command signal. The system further includes a hitch angle sensor that measures the hitch angle between the vehicle and the trailer that is compared to the hitch angle command signal to generate a hitch angle error signal. A PID control unit receives the hitch angle error signal, and generates a corrected road wheel angle signal based on proportional and derivative gains. The corrected road wheel angle signal is used to generate a motor angle signal that is applied to a steering actuator to be combined with the steering angle signal to generate the front wheel steering signal during a back-up maneuver.
摘要:
A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
摘要:
A method for controlling an assisted steering maneuver in an electric power steering (EPS) system includes modeling steering dynamics during a torque overlay operation to generate a dynamic steering model (DSM), measuring vehicle operating values, and detecting a driver intervention in the torque overlay operation based on the DSM and the vehicle operating values. The torque overlay operation is overridden when driver intervention is detected, allowing the driver to regain control of the steering maneuver. A vehicle includes a steering wheel, a steering assist mechanism, and an EPS system having an electronic control unit (ECU) adapted to determine a present intent of a driver of the vehicle to interrupt application of the TOC based on a vehicle operating value transmitted by the driver to the steering wheel. The ECU is operable for interrupting the torque overlay operation when the present intent of the driver is determined.
摘要:
A vehicle curve speed control system (10) adapted for use with a vehicle (12) having an operator (14), includes a map database (16) representing a current vehicle path, and a locator device (20) communicatively coupled to the database (16) and configured to determine the location of the vehicle (12) on the path. The system (10) further includes a controller (36) configured to identify approaching curve points of a curve (18a) in terms of curvature or radius, and determine a desired speed profile based on operator preference and/or vehicle characteristic input. An acceleration profile is determined, based on the current vehicle speed, and desired speed profile. An acceleration/deceleration command at the present control loop is modified towards achieving an optimal curve speed, and is delivered to either a brake or acceleration module (40,42) to automatically accelerate or decelerate the vehicle (12) accordingly.