Abstract:
A wordline driver includes a pre-driver, a sub-wordline driver and a transmission circuit. The pre-driver generates a wordline enable signal and a wordline disable signal based on one or more selection signals, a decoded address signal, and one or more timing control signals. The transmission circuit transmits the wordline enable signal and the wordline disable signal. The sub-wordline driver controls a voltage level of the sub-wordline based on the wordline enable signal and the wordline disable signal that are transmitted by the transmission circuit. Therefore, driving capacity may be improved.
Abstract:
A level detector, an internal voltage generator including the level detector, and a semiconductor memory device including the internal voltage generator are provided. The internal voltage generator includes a level detector that compares a threshold voltage that varies with temperature with an internal voltage to output a comparative voltage, and an internal voltage driver that adjusts an external supply voltage in response to the comparative voltage and that outputs an internal voltage.
Abstract:
A semiconductor memory device comprises a memory cell configured to output data to a pair of bitlines, a variable delay circuit configured to receive a sense amplifier enable signal, adjust a delay of the sense amplifier enable signal by changing a slope of a delay based on a variable external power supply voltage, and output a delayed sense amplifier enable signal, and a bitline sense amplifier configured to amplify a voltage difference between the pair of bitlines in response to the delayed sense amplifier enable signal and output the amplified voltage difference to a pair of input/output lines.
Abstract:
A level detector, an internal voltage generator including the level detector, and a semiconductor memory device including the internal voltage generator are provided. The internal voltage generator includes a level detector that compares a threshold voltage that varies with temperature with an internal voltage to output a comparative voltage, and an internal voltage driver that adjusts an external supply voltage in response to the comparative voltage and that outputs an internal voltage.
Abstract:
A wordline driver includes a pre-driver, a sub-wordline driver and a transmission circuit. The pre-driver generates a wordline enable signal and a wordline disable signal based on one or more selection signals, a decoded address signal, and one or more timing control signals. The transmission circuit transmits the wordline enable signal and the wordline disable signal. The sub-wordline driver controls a voltage level of the sub-wordline based on the wordline enable signal and the wordline disable signal that are transmitted by the transmission circuit. Therefore, driving capacity may be improved.
Abstract:
There are provided selective prediction encoding and decoding methods and selective prediction encoding and decoding devices. The selective prediction encoding device selects and performs one of an AC/DC prediction encoding method and an intra prediction encoding method which corresponds to the smaller of code amount from AC/DC prediction and an amount of AVC intra coding, records information indicating the selected encoding method in a header of a bit stream, and transmits the bit stream to the selective prediction decoding device. The selective prediction decoding device decodes the transmitted bit stream by the use of a decoding process corresponding to the information recorded in the header. Accordingly, it is possible to improve compression ratio and image quality by using the selective prediction encoding and decoding methods.
Abstract:
A level detector, an internal voltage generator including the level detector, and a semiconductor memory device including the internal voltage generator are provided. The internal voltage generator includes a level detector that compares a threshold voltage that varies with temperature with an internal voltage to output a comparative voltage, and an internal voltage driver that adjusts an external supply voltage in response to the comparative voltage and that outputs an internal voltage.
Abstract:
There are provided selective prediction encoding and decoding methods and selective prediction encoding and decoding devices. The selective prediction encoding device selects and performs one of an AC/DC prediction encoding method and an intra prediction encoding method which corresponds to the smaller of code amount from AC/DC prediction and an amount of AVC intra coding, records information indicating the selected encoding method in a header of a bit stream, and transmits the bit stream to the selective prediction decoding device. The selective prediction decoding device decodes the transmitted bit stream by the use of a decoding process corresponding to the information recorded in the header. Accordingly, it is possible to improve compression ratio and image quality by using the selective prediction encoding and decoding methods.
Abstract:
The present invention is directed to a video unified codec device and its method. According to an embodiment of this invention, the unified codec device comprises parsing and decoding functional units (PD FUs) extracting and grouping context information, control signals, and data in bit streams inputted according to different syntax data per codec, macro-block-based functional units (MB-based FUs) unified based on block-based process units of each codec, for decoding data outputted from PD FUs, and a global control unit (GCU) for controlling MB-based FUs grouped after corresponding control signals and context information received from PD FUs to each codec and processing. By this invention, a new concept and structure of unified codec corresponding to similarities, differences, and considerations between different codecs can be presented.