摘要:
Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
摘要:
Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
摘要:
Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
摘要:
A semiconductor device includes an active region. A gate electrode is disposed on the active region. An isolation region adjoins the active region, and is recessed with respect to a top surface of the active region underlying the gate electrode. The isolation region may be recessed a depth substantially equal to a height of the gate electrode. In some embodiments, the gate electrode is configured to support current flow through the active region along a first direction, and a tensile stress layer covers the gate electrode and is configured to apply a tensile stress to the gate electrode along a second direction perpendicular to the first direction. The tensile stress layer may cover the recessed isolation region and portions of the active region between the isolation region and the gate electrode. In further embodiments, an interlayer insulating film is disposed on the tensile stress layer and is configured to apply a tensile stress to the gate electrode along the second direction.
摘要:
A semiconductor device includes an active region. A gate electrode is disposed on the active region. An isolation region adjoins the active region, and is recessed with respect to a top surface of the active region underlying the gate electrode. The isolation region may be recessed a depth substantially equal to a height of the gate electrode. In some embodiments, the gate electrode is configured to support current flow through the active region along a first direction, and a tensile stress layer covers the gate electrode and is configured to apply a tensile stress to the gate electrode along a second direction perpendicular to the first direction. The tensile stress layer may cover the recessed isolation region and portions of the active region between the isolation region and the gate electrode. In further embodiments, an interlayer insulating film is disposed on the tensile stress layer and is configured to apply a tensile stress to the gate electrode along the second direction.
摘要:
Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
摘要:
A semiconductor device includes a sidewall oxide layer covering an inner wall of a trench, a nitride liner on the sidewall oxide layer and a gap-fill insulating layer filling the trench on the nitride liner. A first impurity doped oxide layer is provided at edge regions of both end portions of the sidewall oxide layer so as to extend from an entry of the trench adjacent to an upper surface of the substrate to the nitride liner. A dent filling insulating layer is provided on the nitride liner in the trench to protect a surface of the first impurity doped oxide layer. Related methods are also disclosed.
摘要:
A semiconductor device includes a sidewall oxide layer covering an inner wall of a trench, a nitride liner on the sidewall oxide layer and a gap-fill insulating layer filling the trench on the nitride liner. A first impurity doped oxide layer is provided at edge regions of both end portions of the sidewall oxide layer so as to extend from an entry of the trench adjacent to an upper surface of the substrate to the nitride liner. A dent filling insulating layer is provided on the nitride liner in the trench to protect a surface of the first impurity doped oxide layer. Related methods are also disclosed.
摘要:
In a method of fabricating a trench isolation structure of a semiconductor device, excellent gap filling properties are attained, without the generation of defects. In one aspect, the method comprises: loading a substrate with a trench formed therein into a high-density plasma (HDP) chemical vapor deposition apparatus; primarily heating the substrate; applying a first bias power to the apparatus so as to form an HDP oxide liner on side wall and bottom surfaces of the trench, a gap remaining in the trench following formation of the HDP oxide liner; removing the application of the first bias power and secondarily heating the substrate; applying a second bias power at a power level that is greater than that of the first bias power to the substrate so as to form an HDP oxide film to fill the gap in the trench; and unloading the substrate from the apparatus.
摘要:
In a method of fabricating a trench isolation structure of a semiconductor device, excellent gap filling properties are attained, without the generation of defects. In one aspect, the method comprises: loading a substrate with a trench formed therein into a high-density plasma (HDP) chemical vapor deposition apparatus; primarily heating the substrate; applying a first bias power to the apparatus so as to form an HDP oxide liner on side wall and bottom surfaces of the trench, a gap remaining in the trench following formation of the HDP oxide liner; removing the application of the first bias power and secondarily heating the substrate; applying a second bias power at a power level that is greater than that of the first bias power to the substrate so as to form an HDP oxide film to fill the gap in the trench; and unloading the substrate from the apparatus.