摘要:
A method of operation of a display system includes: receiving a current input image with current input pixels; identifying an input object, having input object pixels, based on differences in characteristics of the current input pixels; calculating an object pixel depth for the input object pixels from an image depth map of the current input image based on a weighted average of depth candidates; and generating a processed image, having a perceived depth, from the current input image with the image depth map and the object pixel depth for displaying on a device.
摘要:
A method of operation of a display system includes: receiving a current input image with current input pixels; identifying an input object, having input object pixels, based on differences in characteristics of the current input pixels; calculating an object pixel depth for the input object pixels from an image depth map of the current input image based on a weighted average of depth candidates; and generating a processed image, having a perceived depth, from the current input image with the image depth map and the object pixel depth for displaying on a device.
摘要:
A system and method which determines an adaptive vertical search range used to provide motion estimation in digital video content are disclosed. In some embodiments, a fixed-size vertical search range for the motion estimation is defined and utilized. A reference frame and target frame are stored in memory, and a block in the reference frame is selected for consideration. An offset value is determined which is indicative of a directional shift of the fixed-size vertical search range and the vertical search range is shifted based on the offset value. A motion vector is then estimated using the shifted vertical search range.
摘要:
A system and method for more efficiently determining motion vectors of uncovering areas adjacent the edge of frames when the frame image is moving in the direction of the frame boundary. Backwards motion estimation is used to determine a block of video data which is, in one implementation, the block of video data adjacent the frame edge having a reliable motion vector known from the first frame. Once the block is identified, the blocks of video data in the uncovering area between the identified block and the frame boundary can then be assigned the motion vector data of the identified block.
摘要:
A method for reliability estimation of temporal noise estimation in a sequence of video frames. The temporal local differences from a difference between a previous frame and a next frame in the sequence of frames is determined. A distribution of the temporal local difference is determined. Characteristics values of the distribution are determined. The characteristics values are compared to the thresholds to obtain an indication of the reliability of the temporal noise estimation. If the estimated noise variance is determined as not reliable, it will be discarded and the previous estimated reliable noise variance will be used instead indicating the noise level of the current frame.
摘要:
An improved temporal noise reduction method and system detects the global motion and adjusts the overall gain of the temporal filtering. Temporal noise reduction is applied to two video frames, wherein one video frame is the current input noisy frame, and the other video frame is a previous filtered frame stored in memory. In this method, noise estimation is first performed to estimate the noise variance/standard deviation in the input video sequence. Then, motion estimation is applied to obtain the motion vectors indicating relative motion between the pixels in the current noisy frame and the corresponding pixels in the previous noise-reduced frame. From such motion vectors, global motion estimation is applied to estimate the camera motion of the video sequence. If reliable global motion is obtained, the overall gain of the temporal filtering is reduced by adjusting the estimated noise level. Motion blur is thus prevented.
摘要:
A video scaling process system, wherein the high frequency components of the input video sequence are compensated for, prior to video scaling. The video scaling system includes a pre-compensator for compensation of the high frequency components of the input video sequence, and a video scaler. The pre-compensator includes a high frequency component extractor, a noise detector and a shoot suppressor. The high frequency component extractor extracts the high frequency compensation component from an input video sequence. The noise detector adjusts the gain of the compensation to avoid the enhancement of the noise component. The shoot suppressor further adjusts the gain of the compensation to avoid shoot artifacts. The adjusted high frequency compensated video is added back to the input video. The pre-compensated video sequence is then passed through a video scaler to obtain the scaled video. As such, the sharpness of the scaled video is maintained or even enhanced.
摘要:
An image processing system implements recursive 3D super precision for processing smoothly changing video image areas by performing temporal noise reduction and then 2D super precision. The temporal noise reduction is applied to two frames, one being the current input low precision frame, and the other being the previous higher precision frame from memory. The 2D super precision is applied to the noise reduced frame to output a high precision frame which is also saved into memory for processing the next incoming frame. The input frame has a limited bit depth while the output image has an increased bit depth.
摘要:
A method of computing a motion decision signal for a video processing system, by: inputting a video signal including a video sequence of frames; filtering a frame in the video signal; computing a point-wise temporal local difference signal between the filtered frame and a next frame in the video sequence; computing a point-wise motion decision signal based on the temporal local difference signal.
摘要:
A method of bidirectional temporal noise reduction in a video signal processing system is provided. A video signal comprising a video sequence of frames is received. Backward temporal noise reduction is performed on the sequence of frames to obtain backward noise-reduced frames. Then, forward temporal noise reduction is performed on the backward noise-reduced frames, to reduce noise in the video sequence of frames.