摘要:
A fuel cell system includes a fuel cell, an operation controller and an air-conditioning mechanism. In response to a heating request for the air-conditioning mechanism during ordinary operation where the fuel cell is operated at an operating point on a current-voltage characteristic curve of the fuel cell, the operation controller compares a heat value-based required current value with an output-based required current value. When the output-based required current value is equal to or greater than the heat value-based required current value, the operation controller causes the fuel cell to be operated at an operating point on the current-voltage characteristic curve. When the output-based required current value is smaller than the heat value-based required current value, the operation controller controls the operating point of the fuel cell to an operating point of lower power generation efficiency than that of the operating point on the current-voltage characteristic curve.
摘要:
A fuel cell system includes a fuel cell, an operation controller and an air-conditioning mechanism. In response to a heating request for the air-conditioning mechanism during ordinary operation where the fuel cell is operated at an operating point on a current-voltage characteristic curve of the fuel cell, the operation controller compares a heat value-based required current value that is a current value of an operating point that is located on the current-voltage characteristic curve and satisfies a required heat value for the fuel cell with an output-based required current value that is a current value of an operating point that is located on the current-voltage characteristic curve and satisfies a required output for the fuel cell. When the output-based required current value is equal to or greater than the heat value-based required current value, the operation controller causes the fuel cell to be operated at an operating point on the current-voltage characteristic curve. When the output-based required current value is smaller than the heat value-based required current value, the operation controller controls the operating point of the fuel cell to an operating point of lower power generation efficiency than that of the operating point on the current-voltage characteristic curve.
摘要:
A fuel cell system includes a fuel cell, a secondary battery, an oxidizing gas supplier, a gas supply flow regulator, an oxidizing gas supply path, a cathode off-gas exhaust path, a bypass flow path, a flow regulator, an available power output acquirer, and an operation controller, wherein the gas supply flow regulator regulates the gas supply flow rate to cause the oxidizing gas supplier to supply an excess gas flow rate, which is set to be greater than a target fuel gas-requiring gas flow rate, wherein the target fuel gas-requiring gas flow rate is the fuel cell-requiring gas flow rate to be supplied to the fuel cell in order to achieve the target current value, when the available power output is less than a minimum amount of electric power required for the oxidizing gas supplier to increase the gas supply flow rate from 0 to a preset gas flow rate within a preset time period, and the operation controller controls the flow regulator to make the bypass flow rate equal to a difference gas flow rate between the excess gas flow rate and the target fuel cell-requiring gas flow rate.
摘要:
A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
摘要:
A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
摘要:
An object is to suppress the degradation of durability due to a heat concentration while performing a rapid warm-up operation as necessary, when starting a fuel cell system at temperatures below freezing point. In order to achieve such an object, the present invention stores in a memory an operation termination condition of the last operation of the system, data such as the start-up temperature, or the remaining amount of product water at the time of the last scavenging; calculates the remaining amount of product water based on data read out from the memory at the time of starting the system to make judgments, from the remaining amount and the start-up temperature, on whether or not a rapid warm-up of the system is necessary and whether to start without circulating the cooling water when a rapid warm-up is necessary; and conducts, based on the judgment result provided by the judgment means, with or without circulating the cooling water, a low-efficiency power generation where a reactant gas to be supplied to the fuel cell is less than that in a normal power generation and an electronic power loss is larger than that in a normal power generation. The data includes, for example, an impedance, a temperature of the fuel cell and a scavenging air amount at the last termination of the operation of the fuel cell.
摘要:
An object is to suppress the degradation of durability due to a heat concentration while performing a rapid warm-up operation as necessary, when starting a fuel cell system at temperatures below freezing point. In order to achieve such an object, the present invention stores in a memory an operation termination condition of the last operation of the system, data such as the start-up temperature, or the remaining amount of product water at the time of the last scavenging; calculates the remaining amount of product water based on data read out from the memory at the time of starting the system to make judgments, from the remaining amount and the start-up temperature, on whether or not a rapid warm-up of the system is necessary and whether to start without circulating the cooling water when a rapid warm-up is necessary; and conducts, based on the judgment result provided by the judgment means, with or without circulating the cooling water, a low-efficiency power generation where a reactant gas to be supplied to the fuel cell is less than that in a normal power generation and an electronic power loss is larger than that in a normal power generation. The data includes, for example, an impedance, a temperature of the fuel cell and a scavenging air amount at the last termination of the operation of the fuel cell.
摘要:
When starting operation of a fuel cell below the freezing point, a fuel cell system adjusts the open degree of a hydrogen pressure adjusting valve, introduces hydrogen to a hydrogen entrance of the fuel cell so as to make the total pressure of the hydrogen entrance is a first pressure, and starts a hydrogen circulation pump. If at least one of the cell voltages acquired by a cell voltmeter is below a predetermined voltage, the system determines that clogging is caused in a hydrogen flow channel in the fuel cell. When it is determined that clogging is present, the open degree of the pressure adjusting valve is adjusted and hydrogen is introduced to the hydrogen entrance so that the total pressure of the hydrogen entrance is a second pressure which is higher than the first pressure. Then, the hydrogen circulation pump is stopped and the fuel cell is warmed up to dissolve the clogging of the hydrogen flow channel. Thus, it is possible to suppress degradation of the fuel cell upon an operation start below the freezing point.
摘要:
When starting operation of a fuel cell below the freezing point, a fuel cell system adjusts the open degree of a hydrogen pressure adjusting valve, introduces hydrogen to a hydrogen entrance of the fuel cell so as to make the total pressure of the hydrogen entrance a first pressure, and starts a hydrogen circulation pump. If at least one of the cell voltages acquired by a cell voltmeter is below a predetermined voltage, the system determines that clogging is caused in a hydrogen flow channel in the fuel cell. When it is determined that clogging is present, the open degree of the pressure adjusting valve is adjusted and hydrogen is introduced to the hydrogen entrance so that the total pressure of the hydrogen entrance is a second pressure which is higher than the first pressure. Then, the hydrogen circulation pump is stopped and the fuel cell is warmed up to dissolve the clogging of the hydrogen flow channel. Thus, it is possible to suppress degradation of the fuel cell upon an operation start below the freezing point.
摘要:
A fuel cell system includes a fuel cell stack and a fuel gas piping system which supplies a fuel gas to the fuel cell stack, and is capable of, at starting below a freezing point, selectively performing a rapid warm-up operation to generate electric power at an air stoichiometric ratio lower than that at starting at ordinary temperature, while revolving a circulating pump, and the fuel cell system further includes a clogging determination unit which determines whether or not clogging arises from freezing in a fuel gas passage of the fuel cell stack, or the fuel gas piping system, wherein when the clogging arises, the circulating pump is stopped in the rapid warm-up operation, and termination conditions of the rapid warm-up operation are changed in accordance with a clogging volume.