Abstract:
A liquid crystal display device includes: a liquid crystal display unit including a plurality of display units each switching between bright display and dark display; a backlight having a light source of a plurality of colors for making light emitted from the light source be incident upon the liquid crystal display unit; and a drive unit for performing field sequential driving through synchronization of the liquid crystal display unit and backlight, wherein the drive unit controls a state of bright/dark display of the liquid crystal display unit to realize a display pattern corresponding to each subframe obtained by dividing a frame into a plurality of subframes, and controls an emission state of the backlight to turn on the backlight of emission color corresponding to a display pattern of an arbitrary first subframe from some timing in the first subframe to some timing in a second subframe immediately after the first subframe.
Abstract:
A liquid crystal display unit has: a pair of opposing substrates; an electrode pattern formed on each of the substrates on an opposing surface side; a vertical alignment film formed on each of the substrates and covering the electrode pattern; a liquid crystal layer squeezed between the substrates; and a pair of polarizer plates formed on the substrates on an opposite side to the side of said liquid crystal layer, wherein an edge of the electrode pattern includes a zigzag pattern parallel to one of axis directions of the polarizer plates and a direction perpendicular the axis direction. Optical through can be reduced along an edge portion of a pixel of a vertical alignment LCD.
Abstract:
A liquid crystal display includes: a liquid crystal layer squeezed between first and second substrates and vertically aligned at a retardation of 300-1000 nm; first and second compensators disposed on the first substrate and having negative biaxial optical anisotropy; a first polarizer disposed on the first and second compensators; and a second polarizer on the second substrate disposed crossed-Nichol with said first polarizer, wherein: the second compensator is disposed between the first substrate and first compensator; an in-plane slow axis of the first compensator is disposed perpendicular to an absorption axis of the first polarizer; the in-plane slow axis of the first compensator is disposed perpendicular to an in-plane slow axis of the second compensator; and a retardation in an in-plane direction of the first compensator is larger than that of the second compensator.
Abstract:
A liquid crystal display device includes: a pair of substrates each disposed on each opposing plane and having an electrode of a predetermine shape; a vertical alignment film formed covering each of the electrodes of the pair of substrates and subjected to a rubbing alignment process; an insulating film formed between the electrode and the vertical alignment film in each of the pair of substrates and having necessary insulation; and liquid crystal sandwiched between the pair of substrates and having a negative dielectric anisotropy Δε and a specific resistance ρc1 of 1.0×1014 Ωcm to 1.0×1015 Ωcm, wherein a structure between the electrodes is selected to satisfy conditions of T≦5.2×τc1×1/(1×1012) sec and T≦500 sec, where T is a charge resident time until a display image disappears completely after static electricity of 10 kV is applied between the electrodes of the pair of substrate and the display image is tuned on. It is possible to prevent alignment defects to be caused by static electricity generated by rubbing of a liquid crystal display device.
Abstract:
A liquid crystal display includes: a liquid crystal layer squeezed between first and second substrates and vertically aligned at a retardation of 300-1000 nm; first and second compensators disposed on the first substrate and having negative biaxial optical anisotropy; a first polarizer disposed on the first and second compensators; and a second polarizer on the second substrate disposed crossed-Nichol with said first polarizer, wherein: the second compensator is disposed between the first substrate and first compensator; an in-plane slow axis of the first compensator is disposed perpendicular to an absorption axis of the first polarizer; the in-plane slow axis of the first compensator is disposed perpendicular to an in-plane slow axis of the second compensator; and a retardation in an in-plane direction of the first compensator is larger than that of the second compensator.
Abstract:
A liquid crystal display unit has: a pair of opposing substrates; an electrode pattern formed on each of the substrates on an opposing surface side; a vertical alignment film formed on each of the substrates and covering the electrode pattern; a liquid crystal layer squeezed between the substrates; and a pair of polarizer plates formed on the substrates on an opposite side to the side of said liquid crystal layer, wherein an edge of the electrode pattern includes a zigzag pattern parallel to one of axis directions of the polarizer plates and a direction perpendicular the axis direction. Optical through can be reduced along an edge portion of a pixel of a vertical alignment LCD.
Abstract:
A liquid crystal display includes a first substrate including a first electrode, a second substrate including a second electrode, and a liquid crystal layer provided between the first substrate and the second substrate which is controlled to a substantially vertical orientation having a pretilt angle smaller than 90 degrees. The first electrode includes a plurality of rectangular openings extending in a direction substantially perpendicular to the orientation direction of liquid crystal molecules at substantially a center of the liquid crystal layer. A plurality of first areas and a plurality of second areas disposed mutually alternately are set in an effective display area in which the first electrode and the second electrode overlap in a planar view. Relative positions of the openings are mutually unmatched relative to at least a part of the plurality of second areas, and the openings are not formed in the plurality of first areas.
Abstract:
A liquid crystal display element comprises a pair of substrates facing each other with a predetermined gap, strips of first electrodes formed on one substrate, strips of second electrodes formed on another substrate and crossing the first electrodes, an alignment film formed on at least one of the substrates and treated with an alignment process in a direction not perpendicular to a longitudinal direction of the second electrodes, a vertical alignment mode liquid crystal layer placed between the substrates and having a pretilt angle, and a pair of polarizers sandwiching the substrates, wherein the fist and the second electrodes cross each other to form pixels, and non-uniform alignment regions where liquid crystal molecules in a center of a thickness of the liquid crystal layer are aligned in a different direction from the direction defined by the alignment process appear near an edge of each pixel.
Abstract:
A simple matrix type dot-matrix liquid crystal display element includes a first and a second transparent substrate disposed opposite to each other, first and second transparent electrodes disposed on the opposed face of the first and the second transparent substrate, respectively, a first and a second vertical alignment film disposed on the opposed side of the first and the second transparent substrate to cover the first and the second electrodes, respectively, a liquid crystal layer disposed between the opposed side of the first and the second transparent substrate and having Δε 450 nm, and a first and a second viewing angle compensation plate disposed on the unopposed side of the first and the second transparent substrate, respectively, wherein in the first transparent electrode, openings extending in a predefined direction are aligned.
Abstract:
A vertical alignment type liquid crystal display, which has a liquid crystal layer whose retardation value is about 600 nm or more, can solve the viewing angle problems associated with the wider viewing angle. The liquid crystal display can include a vertical alignment liquid crystal cell, and first and second polarizing plates cross-Nicol disposed on respective sides of the liquid crystal cell. The liquid crystal cell has a liquid crystal layer with a retardation of about 600 nm or more. A C-plate and an A-plate are provided between the liquid crystal cell and the first polarizing plate, and two C-plates are provided between the liquid crystal cell and the second polarizing plate.