摘要:
Disclosed is a catalyst support for catalytic reactors for cleaning exhaust gas, characterized in that flat steel band plates and corrugated steel band plates, each of which is heat-resistance and covered with catalyst, are superposed in such a way that one comes on top of the other alternately, and brazed together on their center line running along the longitudinal direction thereof.
摘要:
This invention concerns a mechanical plating process comprising: shaving metal off from a pure metal or alloy block and plating an object to be plated with the shaved off metal by the use of at least a single metal brush, wherein the metal block and the metal brush are in frictional contact with each other, and the object to be plated and the metal brush are concurrently in frictional contact with each other.
摘要:
This invention concerns a production process of ferrite stainless steel covered with oxide whisker suitable for metal catalyst supports in automobile's exhaust gas converters, which comprises plating a ferrite stainless steel with aluminum, diffusing the aluminum into the stainless steel by heating in vacuum or in a non-oxidizing gas so that the surface of the ferrite stainless steel turns into an aluminum-enriched ferrite phase, and allowing oxide whisker to grow there by heating in the air.
摘要:
This invention concerns a production process of ferrite stainless steel covered with oxide whisker suitable for metal catalyst supports in automobile's exhaust gas converters, which comprises controlling the continued growth of alumina whiskers on ferrite stainless steel by heating ferrite stainless steel having alumina whiskers on the surface to 1000.degree.-1200.degree. C. for about 1 minute to 1 hour in a non-oxidizing atmosphere.
摘要:
A ferritic stainless steel, of which the surface is coated with a blade-like aluminum oxide, is disclosed. The ferritic stainless steel can be manufactured by heating a ferritic stainless steel containing aluminum at the surface in a stream of purified air. The aluminum-containing stainless steel possesses improved adhesiveness to catalyst carrier which can be utilized in a honeycomb metal structure for a catalytic converter for automobile exhaust gases or in a catalytic device for purifying combustion gases.
摘要:
A source controller unit for controlling an x-ray source is provided with a detection signal interface for receiving detection signals from detective pixels of an electronic cassette or an integrated value of the detection signals only, or an interface for receiving a radiation stopping signal only. The source controller unit receives other radiation signals than the radiation stopping signal, such as a radiation admitting signal, through a radiation signal interface. The source controller unit uses the detection signals, the integrated value thereof, or the radiation stopping signal as exposure control signals for stopping radiation from the x-ray source. Since the exposure control signals are received on the specific interface therefor, the source controller unit does not need signal sorting operation nor receive different kinds of signals at the same time, improving the speed of radiation stopping procedure.
摘要:
In continuous radiography, while a patient stands in front of an imaging support, a total image capture field is determined. The total image capture field is divided into small image capture fields. A map scaling section scales up or down a full spine irradiation area map in accordance with the size of the total image capture field. A map dividing section divides the scaled map into small maps corresponding to the small image capture fields. In each division exposure, a detection pixel selector selects one or more detection pixels belonging to an irradiation area defined by the small map, out of all detection pixels distributed in an imaging surface of an electronic cassette. If an integration value of a detection signal from the selected detection pixel reaches a threshold value, X-ray emission is stopped. Division X-ray images obtained by the division exposures are merged into a single continuous X-ray image.
摘要:
A compensation circuit 76 of an AEC unit 67 of an electronic cassette 13 defines the detection signal of a detection pixel 65 of the electronic cassette 13 as a detection signal corresponding to the detection signal of an old AEC sensor 25. The compensation circuit 76 performs compensation so as to exclude the influence on the detection signal due to a difference in the configuration of an intermediate member disposed between an X-ray source 10 and an FPD 35 of the electronic cassette 13 when the detection pixel 65 is used as an AEC sensor instead of the old AEC sensor 25. The detection signal is transmitted from a detection signal I/F 80 to a detection signal I/F 26 of a source control device 11 as it is (instantaneous value) or as an accumulated value obtained using an integration circuit 77.
摘要翻译:电子盒13的AEC单元67的补偿电路76将电子盒13的检测像素65的检测信号定义为对应于旧AEC传感器25的检测信号的检测信号。补偿电路76执行补偿 以便当检测像素65用作AEC传感器时,排除由于设置在电子盒13的X射线源10和FPD 35之间的中间构件的构型的差异而对检测信号的影响 检测信号从原始控制装置11的检测信号I / F 80发送到原始控制装置11的检测信号I / F 26(瞬时值),或作为使用积分获得的累积值 电路77。
摘要:
A portable radiographic imaging device and a portable X-ray source, that operate due to a first and second rechargeable battery respectively, can be accommodated in an accommodating case that is portable. While the accommodating case is being transported, a charging circuit provided in the accommodating case acquires electric power from a third rechargeable battery accommodated in the accommodating case, and charges the first and second rechargeable batteries. In this way, by accommodating the portable radiographic imaging device and the portable X-ray source in the accommodating case, the rechargeable batteries for the portable radiographic imaging device and the portable X-ray source are charged during transport.
摘要:
Disclosed is a technique for correcting a pixel defect in the capture of two radiological images with parallax therebetween. Radiation beam is directly radiated to a radiation detector 15 in two radiographing directions, without passing through a subject, thereby acquiring two defect detecting radiological images. A pixel defect in each of the two defect detecting radiological images is detected in advance. A pixel position where the pixel defect occurs is stored in advance so as to be associated with each radiographing direction. Then, radiation beam is radiated to the subject from the two radiographing directions to acquire two radiological images for diagnosis. A target pixel which is disposed at the stored pixel position where the pixel defect occurs in each of the two radiological images for diagnosis is corrected.