摘要:
A method of manufacturing a high permeability amorphous magnetic alloy is disclosed. In the method amorphous magnetic alloy ribbon prepared by quenching a melt of raw material is annealed at an elevated temperature lower than a crystallization temperature of the alloy, in a magnetic field. During the annealing, the alloy ribbon and the direction of the magnetic field are relatively rotated with each other. The method is especially useful to an amorphous magnetic alloy having high saturation magnetic induction where the magnetic Curie temperature of the alloy usually exceeds the crystallization temperature of the alloy.
摘要:
A method of manufacturing an amorphous magnetic alloy having high permeability comprises the steps of:preparing an amorphous magnetic alloy ribbon having major surfaces;annealing said magnetic alloy ribbon at a temperature lower than the crystallization temperature of said alloy under the application of a first magnetic field in a first direction along said major surface for a period sufficient to induce a magnetic anisotropy in said first direction; andannealing said magnetic alloy ribbon at a temperature lower than the crystallization temperature of said alloy under the application of a second magnetic field in a second direction perpendicular to said first direction along said major surface until the induced magnetic anisotropies in said first and second directions become equal to each other.
摘要:
The amorphous magnetic alloy ribbon for magnetostriction delay lines are prepared by annealing the ribbon having a negative magnetostriction constant at a temperature lower than the crystallization temperature of the alloy under a tension sufficiently enough to support the ribbon substantially straight between the both ends thereof.The ribbon thus prepared permits a decrease in a deviation in a distribution of internal stresses and the propagation speeds of magnetostriction vibration through the ribbon.
摘要:
A method of manufacturing an amorphous alloy involves thermally treating or annealing the amorphous alloy material at a temperature lower than the crystallization temperature thereof through rotation of the alloy material relative to a magnetic field at a velocity so as to meet the following relationship:R.tau..sub.O =0.5nwhereR is the number of revolutions per minute,.tau..sub.O is an average time required to cause the amorphous alloy material to reach a thermal equilibrium state of induced magnetic anisotropy, andn is an integer of at least 1.The amorphous alloy thus prepared possesses a high permeability and a high saturated magnetic flux so that it is suitable as a soft magnetic core material, such a magnetic heads.
摘要翻译:制造非晶态合金的方法包括通过合金材料相对于磁场的速度旋转来在低于其结晶温度的温度下对非晶合金材料进行热处理或退火,以满足以下关系:R tau O = 0.5n其中R是每分钟的转数,tau O是使非晶合金材料达到感应磁各向异性的热平衡状态所需的平均时间,n是至少为1的整数。非晶合金 因此制备的磁导率高,磁饱和磁通高,因此适合作为软磁芯材料,如磁头。
摘要:
Annealing method for an amorphous magnetic alloy including the steps of preparing an amorphous magnetic alloy film, and annealing the amorphous magnetic alloy film at an elevated temperature lower than Curie temperature and crystallization temperature of the amorphous magnetic alloy film under an application of a repetition of alternately applied a first magnetic field and a second magnetic field, in which the first magnetic field is applied along one direction in a major surface of the amorphous magnetic alloy film for a predetermined period, and the second magnetic field is applied along a second direction perpendicular to the one direction in the major surface of the amorphous magnetic alloy film for the predetermined period.
摘要:
An amorphous magnetic alloy consists of 2 to 20 at % (atomic percent) of ruthenium atoms; 10 to 30 at % of atoms of at least one amorphous forming element selected from the group consisting of phosphorus, carbon, silicon, boron and germanium; and iron atoms as the predominant component of the balance.
摘要:
A method of manufacturing an high permeability amorphous magnetic alloy is disclosed. In the method, an amorphous alloy ribbon is annealed at an elevated temperature T(.degree.K.) satisfying the relation 0.95.times.Tc (.degree.K.).ltoreq.T(.degree.K.)
摘要:
A device for producing a high frequency modulating magnetic field is disclosed. The device is especially useful to achieve real-time overwriting in magneto-optical recording. The device produces magnetic field modulated according to a signal to be recorded on a magneto-optical recording medium in which the signal is recorded in the form of magnetization direction on the magneto-optical recording medium under irradiation of a laser beam to raise the temperature of the medium. The device comprises a main magnetic pole formed of a low-loss soft magnetic material and having one end facing to the magnetic-optical recording medium and a sheathed conductor wound around the main magnetic pole and consisting of a parallel connection of a plurality of insulated elementary wires.
摘要:
Disclosed is a soft magnetic thin film having a basic composition of FecoNi or FeCoDy which is specified for use as a single layer film for increasing the saturation magnetic flux density and the coercive force.The soft magnetic properties are achieved by laminating the above defined soft magnetic thin film as the first soft magnetic thin film layer with a second magnetic thin film layer. In this case, crystal structures of the first and the second soft magnetic thin films should appropriately be selected and combined.
摘要:
A magnetic recording and reproducing head records a signal from and reproduces a signal from a magnetic recording medium having a perpendicularly magnetizable film. The magnetic recording and reproducing head includes a magnetic sensing section comprising a slender needle of a soft magnetic material, and an exciting coil wound around the slender needle for magnetizing the slender needle to record a signal on the magnetic recording medium. To reproduced the recorded signal, high-frequency electric energy is applied to the magnetic sensing section to produce a reflected wave, and a change in the reflected wave caused by a leakage magnetic field produced by a signal recorded on the magnetic recording medium is detected as representing the recorded signal.