摘要:
An ultrasonic diagnostic apparatus includes a transmission unit that transmits at least one ultrasonic pulse from a surface of a skin of a subject toward a blood vessel (21) thereof, a reception unit (3) that receives an ultrasonic echo reflected by the blood vessel and converts the same into an electric signal to obtain a signal of the ultrasonic echo along a depth direction from the surface of the skin, a movement detection unit (5) that analyzes a phase of the ultrasonic echo signal in a direction traversing the blood vessel so as to calculate a movement amount in each of a plurality of parts included in a blood vessel wall constituting the blood vessel and a vicinity of the blood vessel wall, and a boundary detection unit (7) that detects a boundary position between the blood vessel wall and a blood flow region (22) in a lumen of the blood vessel through which blood flows based on a variation in the calculated movement amount in each part. Instability occurring when a brightness signal in image data is used can be eliminated, so that a state of a blood vessel, such as an IMT value, can be measured correctly using ultrasonic waves.
摘要:
An ultrasonic diagnostic apparatus includes a transmission unit that transmits at least one ultrasonic pulse from a surface of a skin of a subject toward a blood vessel (21) thereof, a reception unit (3) that receives an ultrasonic echo reflected by the blood vessel and converts the same into an electric signal to obtain a signal of the ultrasonic echo along a depth direction from the surface of the skin, a movement detection unit (5) that analyzes a phase of the ultrasonic echo signal in a direction traversing the blood vessel so as to calculate a movement amount in each of a plurality of parts included in a blood vessel wall constituting the blood vessel and a vicinity of the blood vessel wall, and a boundary detection unit (7) that detects a boundary position between the blood vessel wall and a blood flow region (22) in a lumen of the blood vessel through which blood flows based on a variation in the calculated movement amount in each part. Instability occurring when a brightness signal in image data is used can be eliminated, so that a state of a blood vessel, such as an IMT value, can be measured correctly using ultrasonic waves.
摘要:
A subject-side apparatus 10A is provided with a cine memory 15 for sequentially storing an ultrasonic signal that is received by an ultrasonic wave transmission/reception portion 12 per each frame. Every time after freezing when moving a pointer for designating a frame to be reproduced in a hospital-side apparatus 20A, a communication line interface 14 of the subject-side apparatus reproduces a frame that is required to be retransmitted by a console 24 of the hospital-side apparatus from the cine memory, and retransmits it to a communication line interface 21 of the hospital-side apparatus via a communication line 30. Then, an ultrasonic image of the retransmitted frame is displayed on a monitor 23. When an examiner performs a diagnosis with respect to a subject in a remote location via the communication line, an ultrasonic image can be displayed with sufficiently suppressed degradation of an image quality compared with an image quality of an original image, even at a low data rate of the communication line.
摘要:
There is provided an excellent biological signal monitor device that allows a living tissue moving in accordance with a body motion or a vibration to be observed as if it were standing still. A reverse correction processing unit (114) subjects a B-mode image to reverse correction based on a movement amount of the living tissue detected by a movement amount detection unit (113), and outputs the B-mode image corresponding to the living tissue moving in accordance with a body motion as quasi-still image information. An arithmetic processing unit (115) subjects the quasi-still image information from the reverse correction processing unit (114) to arithmetic processing such as averaging and filter processing, so as to remove a random noise component. As a result, it is possible to display, for example, a contour portion of a blood vessel wall as the living tissue clearly.
摘要:
There are provided transmission means (1) for transmitting an ultrasonic signal from a surface of a skin of a subject toward a blood vessel (21) of the subject, reception means (3) for receiving a reflected ultrasonic echo and converting the ultrasonic echo into an electric signal to obtain the ultrasonic echo signal in a depth direction from the surface of the skin, movement detection means (5) for analyzing a phase of the ultrasonic echo signal in a direction traversing the blood vessel to calculate a movement amount in each of a plurality of regions including a blood vessel wall and a vicinity of the blood vessel wall, analysis means (7) for analyzing a state of the blood vessel based on a variation in the calculated movement amount in each of the regions, boundary position detection means (8) for detecting a boundary position between the blood vessel wall and a blood flow region of the blood vessel based on a result of the analysis by the analysis means, and stability judgment means (15) for comparing the detected boundary position with a detection result in a previous cycle.
摘要:
An ultrasonic diagnostic apparatus according to the present invention includes: a transmitting section, which drives a probe that transmits an ultrasonic wave toward a subject; a receiving section, which receives an ultrasonic echo, produced by getting the ultrasonic wave reflected by the subject, through the probe, thereby generating a received signal; a property value calculating section for calculating property values of the subject based on the received signal over a period of time; a stability estimating section for sequentially estimating the degrees of stability of the property values that have been calculated over the period of time; and a presenting section for presenting the degrees of stability thereon.
摘要:
A subject-side apparatus 10A is provided with a cine memory 15 for sequentially storing an ultrasonic signal that is received by an ultrasonic wave transmission/reception portion 12 per each frame. Every time after freezing when moving a pointer for designating a frame to be reproduced in a hospital-side apparatus 20A, a communication line interface 14 of the subject-side apparatus reproduces a frame that is required to be retransmitted by a console 24 of the hospital-side apparatus from the cine memory, and retransmits it to a communication line interface 21 of the hospital-side apparatus via a communication line 30. Then, an ultrasonic image of the retransmitted frame is displayed on a monitor 23. When an examiner performs a diagnosis with respect to a subject in a remote location via the communication line, an ultrasonic image can be displayed with sufficiently suppressed degradation of an image quality compared with an image quality of an original image, even at a low data rate of the communication line.
摘要:
There are provided a transmission unit (102) and a reception unit (103) for transmitting and receiving an ultrasonic wave with respect to a subject, a tissue tracing unit (115) for analyzing a received signal to trace the movement of a tissue of the subject, and a property detection unit (120) for detecting a property concerning the movement of the tissue of the subject. The property detection unit (120) subjects either one of the received signal, a Doppler shift, and the movement of the tissue of the subject to signal processing, detects a property concerning the movement of the tissue of the subject that is in synchronization with a heartbeat, and generates an initializing pulse based on the detected property. The tissue tracing unit (115) is initialized by the initializing pulse. It is possible to obtain a distribution image of an elastic modulus of the tissue of the subject as well as a tomographic image of the subject with a simple operation of only applying a probe to the subject without the necessity for a special connection between the subject and the device.
摘要:
A tomographic image and a tissue characteristic image that are in conformity with each other in terms of time-phase and positional relationships can be displayed superimposedly, thereby providing an excellent ultrasonic diagnostic apparatus that enables an easy and detailed observation of a relationship between a structure and a characteristic of a subject tissue. During an operation of ultrasonic wave transmission/reception (in a live mode), a control part (100) allows a tomographic image to be renewed continuously, displayed on a monitor (107), and stored in a tomographic image memory (110), while allowing an elastic modulus image as a tissue characteristic image to be renewed per heartbeat, displayed on the monitor, and stored in an elastic-modulus-image memory (111) as a tissue characteristic image memory. During a suspension of ultrasonic wave transmission/reception (in a cine mode), the control part (100) allows the elastic modulus image to be read out from the elastic-modulus-image memory and the tomographic image that is in synchronization with the elastic modulus image to be read out from the tomographic image memory, and allows these images to be displayed on the monitor.
摘要:
There are provided a transmission unit (102) and a reception unit (103) for transmitting and receiving an ultrasonic wave with respect to a subject, a tissue tracing unit (115) for analyzing a received signal to trace the movement of a tissue of the subject, and a property detection unit (120) for detecting a property concerning the movement of the tissue of the subject. The property detection unit (120) subjects either one of the received signal, a Doppler shift, and the movement of the tissue of the subject to signal processing, detects a property concerning the movement of the tissue of the subject that is in synchronization with a heartbeat, and generates an initializing pulse based on the detected property. The tissue tracing unit (115) is initialized by the initializing pulse. It is possible to obtain a distribution image of an elastic modulus of the tissue of the subject as well as a tomographic image of the subject with a simple operation of only applying a probe to the subject without the necessity for a special connection between the subject and the device.