摘要:
Described herein is a tunnel type magnetic detection element and a manufacturing method thereof. In the tunnel type magnetic detection element, an enhance layer included in a free magnetic layer (upper magnetic layer) disposed on an insulating barrier layer contacts the insulating barrier layer, which may be made of an oxide such as titanium oxide. Under the insulating barrier layer, a second pinned magnetic layer constituting a pinned magnetic layer is formed in contact with the insulating barrier layer. The Fe composition ratio of the enhance layer is greater than that of the second pinned magnetic layer.
摘要:
Described herein is a tunnel type magnetic detection element and a manufacturing method thereof. In the tunnel type magnetic detection element, an enhance layer included in a free magnetic layer disposed on an insulating barrier layer contacts the insulating barrier layer, which may be made of an oxide such as titanium oxide. Under the insulating barrier layer, a second pinned magnetic layer constituting a pinned magnetic layer is formed. The second pinned magnetic layer has a fcc structure in which crystal planes equivalent to a (111) plane are aligned parallel to a layer surface, and the insulating barrier layer is formed to have a rutile structure or the like. The enhance layer is formed to have a bcc structure in which crystal planes equivalent to a (110) plane are aligned parallel to a layer surface.
摘要:
A tunnel-type magnetic detecting element is provided. The tunnel-type magnetic detecting element includes a first ferromagnetic layer; an insulating barrier layer; and a second ferromagnetic layer. The first ferromagnetic layer, the second ferromagnetic layer, or both have a Heusler alloy layer contacting the insulating barrier layer. Equivalent planes represented by {110} surfaces, are preferentially oriented parallel to a film surface in the Heusler alloy layer. The insulating barrier layer is formed of MgO and the equivalent crystal planes represented by the {100} surfaces or the equivalent crystal planes represented by the {110} surfaces are oriented parallel to the film surface.
摘要:
A tunnel-type magnetic detecting element is provided. The tunnel-type magnetic detecting element includes a first ferromagnetic layer; an insulating barrier layer; and a second ferromagnetic layer. The first ferromagnetic layer, the second ferromagnetic layer, or both have a Heusler alloy layer contacting the insulating barrier layer. Equivalent planes represented by {110} surfaces, are preferentially oriented parallel to a film surface in the Heusler alloy layer. The insulating barrier layer is formed of MgO and the equivalent crystal planes represented by the {100} surfaces or the equivalent crystal planes represented by the {110} surfaces are oriented parallel to the film surface.
摘要:
A tunneling magnetic sensing element including an Mg—O insulating barrier which can maintain favorable soft-magnetic properties of a free magnetic layer and can have a high resistance change ratio (ΔR/R) compared to known tunnel magnetic sensing elements is disclosed, and a method of manufacturing such a tunneling magnetic sensing element is also disclosed. An enhance layer (second magnetic layer) composed of Co100-XFeX having a Fe composition ratio X of about 30 to 100 at % is disposed on the Mg—O insulating barrier. With this, the magnetostriction λ of the free magnetic layer can be reduced and the resistance change ratio (ΔR/R) can be increased.
摘要翻译:公开了一种隧道式磁感应元件,其包括能够保持自由磁性层的有利的软磁性能并且与已知的隧道磁传感元件相比可以具有高电阻变化率(&Dgr; R / R)的Mg-O绝缘屏障, 并且还公开了制造这种隧道磁传感元件的方法。 在Mg-O绝缘屏障上设置由Fe组成比X为约30〜100原子%的Co100-XFeX构成的增强层(第二磁性层)。 由此,可以减小自由磁层的磁致伸缩λ,并且可以增加电阻变化率(&Dgr; R / R)。
摘要:
A tunneling magnetic sensor has a multilayer part including, from bottom to top, a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is formed of titanium magnesium oxide (TiMgO) and contains magnesium in an amount of about 4 to 20 atomic percent based on 100 atomic percent of the total content of titanium and magnesium. The insulating barrier layer thus does not have a high concentration of magnesium. This tunneling magnetic sensor can provide a higher rate of resistance change (ΔR/R) at a lower RA (the product of sensor resistance, R, and sensor area, A) than known tunneling magnetic sensors.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of iridium-manganese (IrMn) disposed on the free magnetic layer. Consequently, a high rate of change in resistance is obtained and the magnetostriction of the free magnetic layer is low, compared with a tunneling magnetic sensing element which is not provided with a first protective layer.
摘要:
A tunneling magnetic sensor includes a pinned magnetic layer of which the magnetization is pinned in one direction, an insulating barrier layer, and a free magnetic layer of which the magnetization is varied by an external magnetic field, these layers being arranged in that order from the bottom. A first protective layer made of magnesium (Mg) is disposed on the free magnetic layer. The tunneling magnetic sensor has a larger change in reluctance as compared to conventional magnetic sensors including no first protective layers or including first protective layers made of Al, Ti, Cu, or an Ir—Mn alloy. The free magnetic layer has lower magnetostriction as compared to free magnetic layers included in the conventional magnetic sensors.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of platinum (Pt) disposed on the free magnetic layer. Consequently, it is possible to greatly decrease the magnetostriction of the free magnetic layer while maintaining a high rate of change in resistance compared with a tunneling magnetic sensing element which is not provided with a first protective layer.
摘要:
A tunneling magnetic sensing element includes a pinned magnetic layer whose magnetization direction is pinned in one direction, an insulating barrier layer disposed on the pinned magnetic layer, a free magnetic layer whose magnetization direction varies in response to an external magnetic field disposed on the insulating barrier layer, and a first protective layer composed of iridium-manganese (IrMn) disposed on the free magnetic layer. Consequently, a high rate of change in resistance is obtained and the magnetostriction of the free magnetic layer is low, compared with a tunneling magnetic sensing element which is not provided with a first protective layer.