摘要:
RRO corrector function is formulated to partition the contribution of micro-actuator control from the other voice coil assembly contributions. Single stage actuation is supported by zeroing the micro-actuator control queue, otherwise multi-stage actuation is supported. The multi-stage actuation may include dual stage actuation and in some embodiments triple stage actuation. Triple stage further partitions RRO corrector function for the contribution of the second micro-actuator. Method of initializing an assembled hard disk drive creates hard disk drive as product, using the written-in parameter list for track on the disk surface to recreate the RRO corrector as RRO corrector filter using queues updated by NRRO corrector.
摘要:
RRO corrector function is formulated to partition the contribution of micro-actuator control from the other voice coil assembly contributions. Single stage actuation is supported by zeroing the micro-actuator control queue, otherwise multi-stage actuation is supported. The multi-stage actuation may include dual stage actuation and in some embodiments triple stage actuation. Triple stage further partitions RRO corrector function for the contribution of the second micro-actuator. Method of initializing an assembled hard disk drive creates hard disk drive as product, using the written-in parameter list for track on the disk surface to recreate the RRO corrector as RRO corrector filter using queues updated by NRRO corrector.
摘要:
Method of estimating the stroke sensitivity of micro-actuator coupled with slider and its read-write head. Micro-actuator stimulus signal used to drive micro-actuator, inducing noise into lateral positioning of read-write head near track by voice coil motor to create PES. Lateral position noise derived from Position Error Signal. Stroke sensitivity estimated from lateral position noise and micro-actuator stimulus signal. Apparatus supporting method estimating stroke sensitivity: servo controller, embedded circuit including servo-controller, and hard disk drive may include servo-controller and/or embedded circuit. Method making servo-controller, embedded circuit, and/or hard disk drive. Servo-controller, embedded circuit, and hard disk drive are products of these processes.
摘要:
A slider cradle for lateral positioning slider near rotating disk surface in hard disk drive, consisting essentially of piezoelectric micro-actuator coupling to slider cradle blank, further including piezoelectric micro-actuator coupling to first slider mount arm near slider mount and near slider mount base. A head gimbal assembly including slider cradle coupling to slider, flexure finger, and flexure finger electrically coupling to piezoelectric contacts. An actuator arm coupling to at least one head gimbal assembly. An actuator assembly, comprising voice coil coupling to at least one actuator arm. A hard disk drive containing actuator assembly. The invention includes a method of making slider cradle blank and slider cradle. The products of this process. Making head gimbal assembly, actuator assembly and hard disk drive using the invention's components. The head gimbal assembly, the actuator assembly, and the hard disk drive are products of these processes.
摘要:
Read-write head flying height controlled through micro-actuator assembly. Flying height controlled using DC line and ground line. Lateral position controlled using them and AC line. Micro-actuator assembly operates through three terminals coupled with these lines. Head gimbal assembly contains micro-actuator assembly mechanically coupling to slider with read-write head. Actuator arm includes at least one head gimbal assembly. Actuator arm assembly includes at least one actuator arm. Voice coil actuator includes actuator assembly. Hard disk drive containing voice coil actuator. Electrical interface circuit includes ground port, DC port, and AC port, for micro-actuator assembly. Servo controller drives micro-actuator assembly to control flying height and lateral position, preferably including electrical interface circuit. Manufacturing head gimbal assembly, actuator arm, actuator assembly, voice coil actuator, and hard disk drive, and products of these manufacturing processes.
摘要:
A magnetic head follows a track in a hard disk drive as positioned by micro-actuator and voice coil motor. Embodiments operate two control paths. The micro-actuator control path generates a version of micro-actuator control signal stimulating the micro-actuator. The voice coil motor control path generates a version of voice coil control signal, amplified based upon tuning gain to stimulate voice coil motor. A decoupling feedback filter decouples these control paths, using the micro-actuator control signal version. Either control path may include a notch filter. A track following command, with PES removed, directs the micro-actuator control. The servo-controller may digitally support the invention, which may include the servo-controller program system. An implementation may be optimized within a hard disk drive, possibly as part of the manufacturing process. The hard disk drive is a product of that process.
摘要:
The invention operates two control paths. The micro-actuator control stimulates the micro-actuator. The voice coil motor control path includes the voice coil motor control generating a voice coil control signal, notch filtered to remove at least one significant excitation resonance for a notch filtered voice coil control signal. Amplifying the notch filtered voice coil control signal by a tuning gain stimulates the voice coil motor.A decoupling feedback filter uses the micro-actuator control signal to create a decoupling feedback signal used to decouple the two control paths. A track following command, with PES removed, directs the micro-actuator control. The voice coil motor control is directed by the track following command, with both PES and decoupling feedback signal removed.Preferably, the servo-controller digitally supports the elements of the invention. Implementing the method may preferably include the servo-controller program system residing in an accessibly coupled memory.The invention includes optimizing an implementation within the hard disk drive. The optimization may be part of the manufacturing process for the hard disk drive. The invention includes the hard disk drive as the product of that manufacturing process.
摘要:
A slider cradle for lateral positioning slider near rotating disk surface in hard disk drive, consisting essentially of piezoelectric micro-actuator coupling to slider cradle blank, further including piezoelectric micro-actuator coupling to first slider mount arm near slider mount and near slider mount base. A head gimbal assembly including slider cradle coupling to slider, flexure finger, and flexure finger electrically coupling to piezoelectric contacts. An actuator arm coupling to at least one head gimbal assembly. An actuator assembly, comprising voice coil coupling to at least one actuator arm. A hard disk drive containing actuator assembly. The invention includes a method of making slider cradle blank and slider cradle. The products of this process. Making head gimbal assembly, actuator assembly and hard disk drive using the invention's components. The head gimbal assembly, the actuator assembly, and the hard disk drive are products of these processes.
摘要:
The present invention relates to: a method for manufacturing a transparent light emitting device, which can minimize the manufacturing time of a large-area high-resolution transparent light emitting device and maximize the productivity thereof by forming an integrated metal mesh circuit pattern through a UV imprinting technology; and a transparent light emitting device manufactured thereby.
摘要:
Disclosed herein are an electroless surface treatment plated layer of a printed circuit board, a method for preparing the same, and printed circuit board including the same. The electroless surface treatment plated layer includes: electroless nickel (Ni) plated coating/palladium (Pd) plated coating/gold (Au) plated coating, wherein each of the electroless nickel, palladium, and gold plated coatings has a thickness of 0.02 to 1 μm, 0.01 to 0.3 μm, and 0.01 to 0.5 μm. In the electroless surface treatment plated layer of the printed circuit board, a thickness of the nickel plated coating is specially minimized to 0.02 to 1 μm, thereby making it possible to form an optimized electroless Ni/Pd/Au surface treatment plated layer.