摘要:
A phase-changeable layer and a method of forming the same are disclosed. In the method, a first hydrogen gas is introduced into a reaction chamber into which a substrate is loaded at a first flow rate to form first plasma. A primary cyclic CVD process is carried out using precursors in the reaction chamber to form a lower phase-changeable layer having a first grain size on the substrate. A second hydrogen gas is introduced into the reaction chamber at a second flow rate less than the first flow rate to form second plasma. A secondary cyclic CVD process is carried out using the precursors in the reaction chamber to form an upper phase-changeable layer having a second grain size smaller than the first grain size on the substrate, thereby forming a phase-changeable layer. Thus, the phase-changeable layer may have strong adhesion strength with respect to a lower layer and good electrical characteristics.
摘要:
A phase change memory device includes a lower electrode provided on a substrate, an interlayer insulating layer including a contact hole exposing the lower electrode, and covering the substrate, a resistant material pattern filling the contact hole, a phase change pattern interposed between the resistant material pattern and the interlayer insulating layer, and extending between the resistant material pattern and the lower electrode, wherein the resistant material pattern has a higher resistance than the phase change pattern, and an upper electrode in contact with the phase change pattern, the upper electrode being electrically connected to the lower electrode through the phase change pattern.
摘要:
A method includes forming a phase change material layer on a substrate using a deposition process that employs a process gas. The process gas includes a germanium source gas, and the germanium source gas includes at least one of the atomic groups “—N═C═O”, “—N═C═S”, “—N═C═Se”, “—N═C═Te”, “—N═C═Po” and “—C≡N”.
摘要:
A probe array may be fabricated by forming probes arranged on a sacrificial substrate, forming a probe substrate above the probes, and removing the sacrificial substrate. In one embodiment, first probes may be two-dimensionally formed in row and column directions on a sacrificial substrate. Second probes may be formed between the first probes arranged in the row direction such that a distance between the first and second probes is smaller than the resolution limit in a lithography process. A probe substrate may be formed on the sacrificial substrate having the first and second probes, and the sacrificial substrate may be removed.