摘要:
A slim type notebook personal computer mounted with a liquid crystal display module in such a manner to have a thin thickness. In the computer, a top bezel is secured to the edge of a lower glass substrate included in the liquid crystal display module. A buffing member positioned between the edge of the lower glass substrate and the top bezel buffs an impact to be applied to the edge of the lower glass substrate.
摘要:
An array substrate for use in a liquid crystal display device is fabricated by the steps of forming a first metal layer on a substrate, patterning the first metal layer to form a gate line, a gate electrode, a gate pad, a first shorting bar, and a second shorting bar, forming a gate insulation layer, a pure amorphous silicon layer, a doped amorphous silicon layer and a second metal layer to cover the patterned first metal layer, patterning the second metal layer and the doped amorphous silicon layer to form first, second and third through-holes and first and second grooves to expose a portion of the pure amorphous silicon layer, the first and second grooves creating an isolated portions of the second metal layer, forming a passivation layer to cover the patterned second metal layer, forming a source electrode, a drain electrode, a data line, a data pad, an insulating segment, and first, second and third contact holes, and forming a pixel electrode, a first connector and a second connector of a transparent conductive material.
摘要:
The present invention discloses an array substrate for an active-matrix LCD device and a method of fabricating the same. The array substrate reduces the number of masks typically used in the fabrication process so that reliability is enhanced and the cost is reduced over the conventional device and method. Electric shorts caused by hillocks can be prevented or reduced by incorporating short-preventing sections between the gate line and an overlapping pixel electrode.
摘要:
An array substrate for use in a liquid crystal display device is fabricated by the steps of forming a first metal layer on a substrate, patterning the first metal layer to form a gate line, a gate electrode, a gate pad, a first shorting bar, and a second shorting bar, forming a gate insulation layer, a pure amorphous silicon layer, a doped amorphous silicon layer and a second metal layer to cover the patterned first metal layer, patterning the second metal layer and the doped amorphous silicon layer to form first, second and third through-holes and first and second grooves to expose a portion of the pure amorphous silicon layer, the first and second grooves creating an isolated portions of the second metal layer, forming a passivation layer to cover the patterned second metal layer, forming a source electrode, a drain electrode, a data line, a data pad, an insulating segment, and first, second and third contact holes, and forming a pixel electrode, a first connector and a second connector of a transparent conductive material.
摘要:
The present invention discloses an array substrate for an active-matrix LCD device and a method of fabricating the same. The array substrate reduces the number of masks typically used in the fabrication process so that reliability is enhanced and the cost is reduced over the conventional device and method. Electric shorts caused by hillocks can be prevented or reduced by incorporating short-preventing sections between the gate line and an overlapping pixel electrode.
摘要:
A TFT array substrate for use in an LCD device includes at least one repair line to repair line defects. The repair line(s) is formed when forming the pixel electrode so that additional process steps are not required. Accordingly, productivity can be increased. Moreover, either a short-circuit or an open-circuit can be repaired due to the repair line(s). Thus, in the present invention, a TFT array substrate, including: a substrate; a gate line formed on the substrate, arranged in a transverse direction and having a gate electrode; a data line insulated against the gate line by a first insulation layer, arranged in a longitudinal direction perpendicular to the gate line, having a source electrode near the cross point of the gate and data lines, and having first and second data lines which are defined by a cross point of the gate and data lines; a drain electrode space apart from the source electrode over the gate electrode; a pixel electrode connecting to the drain electrode; and a repair line(s) insulated against the data and gate lines by insulation layers and overlapping the gate and data lines, one repair line overlapping a free end of the other repair line and the gate line.
摘要:
A TFT array substrate has a PAI pattern, and the PAI pattern has an over-etched portion of the pure amorphous silicon layer. This over-etched portion prevents a short between the pixel electrode and the pure amorphous silicon layer (i.e., the active layer). The over-etched portion also enables the aperture ratio to increase. a gate line over a said substrate; a data line over the said substrate being perpendicular to the gate line; a passivation layer covering the data line, the passivation layer divided into a residual passivation layer and a etched passivation layer; a doped amorphous silicon layer formed under the data line and corresponding in size to the data line; a pure amorphous silicon layer formed under the doped amorphous silicon layer and having a over-etched portion in the peripheral portions, wherein the over-etched portion is over-etched from the edges of the residual passivation layer toward the inner side; an insulator layer under the pure amorphous silicon layer; a TFT formed near the crossing of the gate line and the data line; and a pixel electrode overlapping the data line and contacting the TFT.
摘要:
A liquid crystal display device and a method for manufacturing the same, are discussed. The liquid crystal display device includes first and second substrates each having an active area and a non-active area, gate lines and data lines formed on the active area of the first substrate to define a plurality of pixel areas, thin film transistors formed at intersections of the gate and data lines, pixel electrodes, a common electrode formed over the second substrate, a conductive seal pattern between the first and second substrates, a common line pattern formed on the first substrate to correspond to the conductive seal pattern, and a transparent electrode pattern overlapping the common line pattern with an insulating layer interposed therebetween, the transparent electrode pattern having a width equal to or less than that of the common line pattern.
摘要:
A liquid crystal display device and a method of fabricating the same are disclosed in the present invention. More specifically, the method includes the steps forming a gate line on the first substrate sequentially forming a first insulating layer, an amorphous silicon layer, and a metal layer on the first substrate, patterning the metal layer to form a data line, forming a second insulating layer on the data line, patterning the second insulating layer and the amorphous silicon layer to form a passivation layer and an active layer, respectively, forming a pixel electrode at a pixel region defined by the gate and data lines, assembling the first substrate and the second substrate having a black matrix thereon, wherein the black matrix vertically overlaps at least one boundary line defined by different exposures during step-and-repeat exposure processes; and forming a liquid crystal layer between the first and second substrates.
摘要:
A TFT array substrate has a PAI pattern, and the PAI pattern has an over-etched portion of the pure amorphous silicon layer. This over-etched portion prevents a short between the pixel electrode and the pure amorphous silicon layer (i.e., the active layer). The over-etched portion also enables the aperture ratio to increase a gate line over a said substrate; a data line over the said substrate being perpendicular to the gate line; a passivation layer covering the data line, the passivation layer divided into a residual passivation layer and a etched passivation layer; a doped amorphous silicon layer formed under the data line and corresponding in size to the data line; a pure amorphous silicon layer formed under the doped amorphous silicon layer and having a over-etched portion in the peripheral portions, wherein the over-etched portion is over-etched from the edges of the residual passivation layer toward the inner side; an insulator layer under the pure amorphous silicon layer; a TFT formed near the crossing of the gate line and the data line; and a pixel electrode overlapping the data line and contacting the TFT.