摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a layer over a substrate. The method includes forming a first opening in the layer that exposes a first region of the substrate. The method includes removing a first oxidation layer formed over the first region through a first sputtering process. The method includes filling the first opening with a conductive material. The method includes forming a second opening in the layer that exposes a second region of the substrate, the second region being different from the first region. The method includes removing a second oxidation layer formed over the second region through a second sputtering process. One of the first and second sputtering processes is more powerful than the other.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a layer over a substrate. The method includes forming a first opening in the layer that exposes a first region of the substrate. The method includes removing a first oxidation layer formed over the first region through a first sputtering process. The method includes filling the first opening with a conductive material. The method includes forming a second opening in the layer that exposes a second region of the substrate, the second region being different from the first region. The method includes removing a second oxidation layer formed over the second region through a second sputtering process. One of the first and second sputtering processes is more powerful than the other.
摘要:
A method of making an integrated circuit includes providing a substrate with a high-k dielectric and providing a polysilicon gate structure over the high-k dielectric. A doping process is performed on the substrate adjacent to the polysilicon gate structure, after which the polysilicon gate structure is removed and replaced with a metal gate structure. An interlayer dielectric (ILD) is deposited over the metal gate structure and the doped substrate, and a dry etch process forms a trench in the ILD to a top surface of the metal gate structure. After the dry etch process, a wet etch process forms an undercut near the top surface of the metal gate structure. The trench and undercut are then filled with a conductive material.
摘要:
A method of making an integrated circuit includes providing a substrate with a high-k dielectric and providing a polysilicon gate structure over the high-k dielectric. A doping process is performed on the substrate adjacent to the polysilicon gate structure, after which the polysilicon gate structure is removed and replaced with a metal gate structure. An interlayer dielectric (ILD) is deposited over the metal gate structure and the doped substrate, and a dry etch process forms a trench in the ILD to a top surface of the metal gate structure. After the dry etch process, a wet etch process forms an undercut near the top surface of the metal gate structure. The trench and undercut are then filled with a conductive material.
摘要:
A partial-via-first dual-damascene method using a tri-layer resist method forms a first via hole through partial thickness of a dielectric layer, and forms a tri-layer resist structure on the dielectric layer to fill the first via hole with the bottom photoresist layer. A dry development process is performed to transfer a first opening on the top photoresist layer to the middle layer and the bottom photoresist layer, and expose the first via hole again, and remove the top photoresist layer. A dry etching process is then performed to form a second via hole under the first via hole and a trench over the second via hole. Finally a wet striping process is used to remove the remainder of the photoresist layer.