摘要:
An apparatus comprises a through via formed in a substrate. The through via is coupled between a first side and a second side of the substrate. The through via comprises a bottom portion adjacent to the second side of the substrate, wherein the bottom portion is formed of a conductive material. The through via further comprises sidewall portions formed of the conductive material and a middle portion formed between the sidewall portions, wherein the middle portion is formed of a dielectric material.
摘要:
Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
摘要:
A semiconductor structure includes a dielectric layer disposed over a substrate. A metallic line is disposed in the dielectric layer. A through-silicon-via (TSV) structure continuously extends through the dielectric layer and the substrate. A surface of the metallic line is substantially leveled with a surface of the TSV structure.
摘要:
A semiconductor component includes a semiconductor substrate having a top surface. An opening extends from the top surface into the semiconductor substrate. The opening includes an interior surface. A first dielectric liner having a first compressive stress is disposed on the interior surface of the opening. A second dielectric liner having a tensile stress is disposed on the first dielectric liner. A third dielectric liner having a second compressive stress disposed on the second dielectric liner. A metal barrier layer is disposed on the third dielectric liner. A conductive material is disposed on the metal barrier layer and fills the opening.
摘要:
A device with through-silicon via (TSV) and a method of forming the same includes the formation of an opening in a silicon substrate, the formation of a first insulation layer on the sidewalls and bottom of the opening, the formation of a second insulation layer on the sidewalls and bottom of the opening. A first interface between the first insulation layer and the silicon substrate has an interface roughness with a peak-to-valley height less than 5 nm. A second interface between the second insulation layer and the conductive layer has an interface roughness with a peak-to-valley height less than 5 nm.
摘要:
A non-ESL semiconductor interconnection structure and a method of forming the same are provided. The non-ESL semiconductor interconnection structure includes a first low-k dielectric layer comprising a first region and a second region overlying the substrate, a plurality of conductive features in the first low-k dielectric layer, a cap layer on at least a portion of the conductive features, and a dielectric capping layer overlying the first low-k dielectric layer in the second region but not in the first region. The conductive features in the second region have a substantially greater spacing than the conductive features in the first region. The dielectric capping layer preferably has an inherent compressive stress.
摘要:
A semiconductor device includes a substrate, an inter-metal dielectric (IMD) layer over the substrate, and either a nitrogen-containing tetraethoxysilane (TEOS) oxide layer or an oxygen-rich TEOS oxide layer over the IMD layer. The molecular ratio of oxygen in the oxygen-rich TEOS oxide layer is greater than 70%. The IMD layer comprises an extra-low dielectric constant (ELK) layer.
摘要:
A process for forming an interconnect structure in a low-k dielectric layer includes etching to form trenches in the dielectric layer, removal of photoresist, and further etching to remove damaged portions of the dielectric layer in sidewalls of the trenches. An interconnect structure includes a low-k dielectric layer formed on a substrate, and a conductor embedded in the dielectric layer, the conductor having an edge portion with an inwardly rounded shape.
摘要:
A method of fabricating semiconductor devices using dual damascene processes to form plugs in the via holes composed of various high etch materials and bottom anti-reflection coating (BARC) materials. After via hole etch, a layer of high etch rate plug material is spin coated to fill the via holes. Next, a layer of photoresist is applied. The photoresist is then exposed through a mask and developed to form an etch opening. Using the remaining photoresist as an etch mask and with a bottom anti-reflection coating (BARC) as protection, the oxide or low k layer is etched to form subsequent wiring. The etch step is known as a damascene etch step. The remaining photoresist is removed and the trench/via openings are filled with metal forming inlaid metal interconnect wiring and contact vias.
摘要:
A method of reducing a charge on a substrate to prevent an arcing incident in a subsequent etch process is described. A patterned substrate is fastened to a chuck in a process chamber. A discharge process is performed that includes the three steps of (a) coupling the chuck to a 0 volt connection, (b) generating a plasma, and (c) coupling the chuck to a high voltage connection. The three steps are carried out in any sequence. An inert gas or an inert gas and an etching gas are flowed into the chamber during the discharge sequence. Alternatively, a fluorocarbon CXFYHZ or a fluorocarbon and a gas such as O2, H2, N2, N2O, CO, CO2, He or Ar is flowed into the chamber during the discharge sequence. The method is compatible with batch or single wafer processes and is extendable to etching low k dielectric layers with poor thermal conductivity.
摘要翻译:描述了一种减少衬底上的电荷以防止在后续蚀刻工艺中的电弧入射的方法。 图案化衬底被固定到处理室中的卡盘。 执行放电处理,其包括以下三个步骤:(a)将卡盘耦合到0伏连接,(b)产生等离子体,以及(c)将卡盘耦合到高压连接。 三个步骤以任何顺序进行。 在放电顺序期间,惰性气体或惰性气体和蚀刻气体流入腔室。 或者,碳氟化合物C 1 H Z,或碳氟化合物和气体如O 2 H,H N 2,N 2,N 2 O,CO,CO 2,He或Ar流入室 在放电序列期间。 该方法与批次或单晶片工艺兼容,并且可扩展到蚀刻导热性差的低k电介质层。