摘要:
A method for assembling rotors which is applicable to a large axial gap type permanent magnet rotating machine. A permanent magnet rotating machine comprising: a rotating shaft; at least two rotors comprising a table-like structure and permanent magnets attached thereto, the table-like structures being connected to the rotating shaft and being disposed in an axial direction of the rotating shaft; and a stator comprising a table-like structure and stator coils around which a copper wire is wound, said stator being disposed in a gap formed by the rotors so that the stator being separated from the rotating shaft, is manufactured by the following steps of assembling the two rotors such that a predetermined gap is formed therebetween; and mounting the magnets on the table-like structures by inserting the magnet from the radially outer side of the table-like structures towards the center of the rotation.
摘要:
A method for assembling rotors which is applicable to a large axial gap type permanent magnet rotating machine is provided.A permanent magnet rotating machine comprising: a rotating shaft; at least two rotors comprising a table-like structure and permanent magnets attached thereto, the table-like structures being connected to the rotating shaft and being disposed in an axial direction of the rotating shaft; and a stator comprising a table-like structure and stator coils around which a copper wire is wound, said stator being disposed in a gap formed by the rotors so that the stator being separated from the rotating shaft, is manufactured by the following steps of. assembling the two rotors such that a predetermined gap is formed therebetween; and mounting the magnets on the table-like structures by inserting the magnet from the radially outer side of the table-like structures towards the center of the rotation with the assembled state being maintained.
摘要:
A method for assembling rotors which is applicable to a large axial gap type permanent magnet rotating machine is provided.A permanent magnet rotating machine comprising: a rotating shaft; at least two rotors comprising a table-like structure and permanent magnets attached thereto, the table-like structures being connected to the rotating shaft and being disposed in an axial direction of the rotating shaft; and a stator comprising a table-like structure and stator coils around which a copper wire is wound, said stator being disposed in a gap formed by the rotors so that the stator being separated from the rotating shaft, is manufactured by the following steps of: assembling the two rotors such that a predetermined gap is formed therebetween; and mounting the magnets on the table-like structures by inserting the magnet from the radially outer side of the table-like structures towards the center of the rotation with the assembled state being maintained.
摘要:
In a rotating machine comprising a rotor including a rotor core and a plurality of permanent magnet segments, and a stator including a stator core and windings, the permanent magnet segment is obtained by disposing a powder comprising an R2 oxide, R3 fluoride or R4 oxyfluoride on a sintered magnet body of R1—Fe—B composition, wherein R1 to R4 are rare earth elements, and heat treating the powder-covered magnet body. The permanent magnet segment of a cross-sectional shape which is tapered from the center toward opposed ends has a higher coercive force at the ends than at the center.
摘要:
In an outer blade cutting wheel comprising an annular thin disc base of cemented carbide having an outer diameter of 80-200 mm, an inner diameter of 30-80 mm, and a thickness of 0.1-1.0 mm, and a blade section disposed on an outer periphery of the base, the blade section comprises diamond grains and/or CBN grains bound with a metal bond having a Young's modulus of 0.7-4.0×1011 Pa and has a thickness which is greater than the thickness of the base by at least 0.01 mm. The outer blade cutting wheel is capable of cutting a workpiece at a high accuracy and a reduced allowance, improves machining yields, and reduces machining costs.
摘要:
A corrosion resistant rare earth magnet is obtained by (i) applying a treating liquid comprising a flaky fine powder and a metal sol to a surface of R-T-M-B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/metal oxide on the magnet surface; (ii) applying a treating liquid comprising a flaky fine powder and a silane and/or a partial hydrolyzate thereof to a surface of R-T-M-B rare earth permanent magnet and then heating a flaky fine powder/silane and/or partially hydrolyzed silane coating to form a composite film on the magnet surface; or (iii) applying a treating liquid comprising a flaky fine powder and an alkali silicate to a surface of R-T-M-B rare earth permanent magnet and then heating to form a composite film of flaky fine powder/alkali silicate glass on the magnet surface.
摘要:
A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
摘要:
A rare earth permanent magnet is prepared by providing a sintered magnet body consisting of 12-17 at % of rare earth, 3-15 at % of B, 0.01-11 at % of metal element, 0.1-4 at % of O, 0.05-3 at % of C, 0.01-1 at % of N, and the balance of Fe, disposing on a surface of the magnet body a powder comprising an oxide, fluoride and/or oxyfluoride of another rare earth, and heat treating the powder-covered magnet body at a temperature below the sintering temperature in vacuum or in an inert gas, for causing the other rare earth to be absorbed in the magnet body.