摘要:
A hydrogen absorbing electrode using a hydrogen absorbing alloy including at least one or more kinds of transition metals belonging to VIIb-group, VIII-group or Ib-group in periodic table at a specified percentage, characterized in that a surface part of the hydrogen absorbing alloy forms a rich layer including the foregoing transition metals at a percentage larger than the foregoing specified percentage. Since the rich layer exists, an activation at initial stage of charge/discharge is not required. Accordingly, this electrode can be utilized effectively for a nickel-hydride secondary battery.
摘要:
This invention relates to a hydrogen absorbing electrode, in which a rare earth element having a basicity weaker than that of La is mixed to a hydrogen absorbing alloy or contained in it for serving as a component element. The invention relates to a nickel electrode, in which a rare earth element is mixed to a nickel hydroxide or contained in it as a solid solution. The invention further relates to an alkaline storage battery, in which a rare earth element is coated on a surface of a nickel electrode or a surface of a separator.
摘要:
A method for forming a nickel plate or a method for making up an alkaline battery, in such a way that cobalt oxyhydroxide is previously formed on surfaces of positive active material powder and used therefor, by mixing the positive active material powder with CoO powder, for example, to be oxidized, by oxidizing the positive active material powder in a solution including cobalt ions, or by mixing the positive active material powder with cobalt oxyhydroxide powder. A conductive network comprising the cobalt oxyhydroxide is formed, so that conductive efficiencies between the positive active materials and the positive active material and the substrate are made better.
摘要:
The object is to provide a nonaqueous-electrolyte battery having high charge/discharge efficiency and excellent high-rate performance. This subject is accomplished by using a nonaqueous electrolyte which comprises an organic solvent and a lithium salt dissolved therein and is characterized by containing at least one quaternary ammonium salt in an amount of 0.06 mol/L or larger and 0.5 mol/L or smaller. This effect is thought to be attributable to the following mechanism: in a relatively early stage (stage in which the negative-electrode potential is relatively noble) in a first charge step, a satisfactory protective coating film is formed on the negative electrode by the action of the quaternary ammonium salt and, hence, the organic solvent employed in the nonaqueous electrolyte is inhibited from decomposing.
摘要:
A positive active material is provided which can inhibit side reactions between the positive electrode and an electrolyte even at a high potential and which, when applied to a battery, can improve charge/discharge cycle performance without impairing battery performances even in storage in a charged state. Also provided are: a process for producing the active material; a positive electrode for lithium secondary batteries which employs the active material; and a lithium secondary battery which has improved charge/discharge cycle performance while retaining intact battery performances even after storage in a charged state and which can exhibit excellent charge/discharge cycle performance even when used at a high upper-limit voltage. The positive active material comprises: base particles able to dope and release lithium ions; and an element in Group 3 of the periodic table present on at least part of that part of the base particles which is able to come into contact with an electrolyte. It is produced by, e.g., a process which comprises: producing base particles containing lithium and able to dope and release lithium ions; and then imparting an element in Group 3 of the periodic table to the base particles so that the element can be present on at least part of that part of the base particles which is able to come into contact with an electrolyte.
摘要:
It is aimed at providing a nonaqueous electrolyte cell excellent in cell performance in a high-temperature environment. A nonaqueous electrolyte cell comprising a positive electrode and a negative electrode, and produced by using a nonaqueous electrolyte including at least one kind of a cyclic carbonate having a carbon-carbon π bond and at least one kind of a cyclic organic compound having an S═O bond, characterized in that the positive electrode is constituted of a positive-electrode active material including a main component which is a fired oxide having a layered rock salt type crystal structure represented by Lim[NibM(1-b)O2] (M is one or more kinds of elements included in 1 to 16 groups excluding Ni, Li, and O; and 0≦m≦1.1), and in which the value of b is 0
摘要翻译:其目的在于提供在高温环境下电池性能优异的非水电解质电池。 一种非水电解质电池,其包含正极和负极,并且使用包含至少一种具有碳 - 碳键的环状碳酸酯和至少一种具有SO键的环状有机化合物的非水电解质 其特征在于,所述正极由包含主成分的正极活性物质构成,所述主成分是具有由Li∈[Ni b]表示的层状岩盐型晶体结构的烧成氧化物 (1-b)O 2(M是除Ni,Li和O之外的1至16个基团中包括的一种或多种元素; 并且0 <= m <= 1.1),其中b的值为0 0,b <> 0),其中c的值为0 <= c <1。
摘要:
A positive active material is provided which can inhibit side reactions between the positive electrode and an electrolyte even at a high potential and which, when applied to a battery, can improve charge/discharge cycle performance without impairing battery performances even in storage in a charged state. Also provided are: a process for producing the active material; a positive electrode for lithium secondary batteries which employs the active material; and a lithium secondary battery which has improved charge/discharge cycle performance while retaining intact battery performances even after storage in a charged state and which can exhibit excellent charge/discharge cycle performance even when used at a high upper-limit voltage. The positive active material comprises: base particles able to dope and release lithium ions; and an element in Group 3 of the periodic table present on at least part of that part of the base particles which is able to come into contact with an electrolyte. It is produced by, e.g., a process which comprises: producing base particles containing lithium and able to dope and release lithium ions; and then imparting an element in Group 3 of the periodic table to the base particles so that the element can be present on at least part of that part of the base particles which is able to come into contact with an electrolyte.
摘要:
The invention provides a polyanion-based positive active material which can improve storage stability (especially, high temperature storage stability), charge and discharge cycle performance and the like of a lithium secondary battery, and a lithium secondary battery using the same. The positive active material for a lithium ion secondary battery contains lithium iron cobalt phosphate represented by the general formula: LiyFe(1-x)CoxPO4(0
摘要:
The invention provides a polyanion-based positive active material which can improve storage stability (especially, high temperature storage stability), charge and discharge cycle performance and the like of a lithium secondary battery, and a lithium secondary battery using the same. The positive active material for a lithium ion secondary battery contains lithium iron cobalt phosphate represented by the general formula: LiyFe(1-x)CoxPO4 (0
摘要翻译:本发明提供一种能够提高锂二次电池的蓄电稳定性(特别是高温保存稳定性),充放电循环性能等的聚阴离子系正极活性物质及使用其的锂二次电池。 锂离子二次电池用正极活性物质含有由通式Li y Fe(1-x)Co x PO 4(0
摘要:
A nonaqueous electrolyte includes an organic solvent and a lithium salt dissolved in the organic solvent, and a quaternary ammonium salt in an amount of 0.06 mol/L or greater and 0.5 mol/L or less, the quaternary ammonium salt having a structure represented by (chemical formula 3): wherein R is an organic linking group or an organic linking group forming an aromatic ring, the organic linking groups each having a main chain which has 4-5 atoms and is constituted of at least one member selected from carbon, oxygen, nitrogen, sulfur, and phosphorus and having one single-bond end and one double-bond end; R1 is an alkyl group having 1-6 carbon atoms or an alkyl group in which at least one of the hydrogen atoms has been replaced by a fluorine atom; and X− is a fluorine-containing anion.