摘要:
A brazing fin material for heat exchangers includes a core material and a filler metal clad on each side of the core material, wherein the core material is an aluminum alloy including manganese, the filler metal is an aluminum alloy including 6 to 9.5 mass % of silicon, silicon particles in the filler metal have an average circle equivalent diameter of 3 μm or less, and the brazing fin material has a thickness of 0.06 mm or less.
摘要:
An aqueous aluminum brazing composition containing an organic binder and zinc-based flux which prevents precipitation of the zinc-based flux having a large specific gravity while securing excellent brazeability. The thixotropic index of the brazing composition is adjusted to 1.01-1.20 by adding (meth)acrylic acid/(meth)acrylate copolymer emulsion to the brazing composition as a precipitation inhibitor in an amount of 0.03-1.50 wt % of 100 wt % of the brazing composition. Since the (meth)acrylic acid/(meth)acrylate copolymer emulsion is used as the precipitation inhibitor in a specific amount instead of other types of compounds used for powder-containing paint such as ultrafine particle silica, poly(meth)acrylate, or polyvinyl alcohol, precipitation of the zinc-based flux can be prevented without impairing brazeability.
摘要:
A sheet material for the tube 10 includes: a core material 10b; and a sacrifical corrosion material 10c clad on one face of the core material 10b which becomes an outside of the tube 10. A sheet material for the fin is a bare aluminum material on which a brazing filler metal is not clad. A mixture composition 10e, in which powder of a brazing filler metal and flux are mixed with each other, is coated on the outside of the tube 10. The tube 10 and the fin are brazed to each other with this mixture composition 10e. Even after the completion of brazing, the sacrifical corrosion material 10c remains on the outside of the tube 10.
摘要:
An aqueous aluminum brazing composition containing an organic binder and a zinc-based flux which prevents the precipitation of the zinc-based flux having a large specific gravity while securing an excellent brazeability. The thixotropic index of the brazing composition is adjusted to 1.01-1.20 by adding a (meth)acrylic acid/(meth)acrylate copolymer emulsion to the brazing composition as a precipitation inhibitor in an amount of 0.03-1.50 wt % of 100 wt % of the brazing composition. Since the (meth)acrylic acid/(meth)acrylate copolymer emulsion is used as the precipitation inhibitor in a specific amount instead of other types of compounds used for a powder-containing paint, such as ultrafine particle silica, poly(meth)acrylate, or polyvinyl alcohol, the precipitation of the zinc-based flux can be prevented without impairing the brazeability.
摘要:
An aluminum extruded multi-cavity flat tube for use in an automotive heat exchanger having excellent brazing characteristics. At least one of the flat surfaces of said aluminum extruded multi-cavity flat tube is coated with a flux composition comprising a brazing flux and a synthetic resin based, as its main constituent, on a methacrylate homopolymer or a methacrylate copolymer or, alternatively, with a brazing composition comprising a brazing flux, brazing metals, and said synthetic resin. In a preferred embodiment, such a coating is provided by applying to a surface of an aluminum extruded multi-cavity flat tube, said compositions as added to an organic solvent and having a molecular structure wherein the atomic ratio of carbon to oxygen is between 2 and 3, by a roll-transfer printing technique.
摘要:
A brazing sheet which has an excellent corrosion resistance and cladding rolling property, and is formed from a four layer aluminum alloy cladding member, and a heat exchanger of aluminum alloy, in which the brazing sheet is used, are provided. The brazing sheet is suitable for use as a member in the fluid path of an aluminum heat exchange for a car, and particularly, as a core plate of a drawn cup type heat exchanger. In the brazing sheet, one side of a core member is cladded with an intermediate member less noble than a core member, and the other side of both the core member and the intermediate member are cladded with Al--Si--Mg type cladding member, wherein the core member is of an aluminum alloy containing 0.5 to 1.6% of Mn, 0.15 to 0.35% of Cu, 0.05 to 0.50% of Mg, 0.06 to 0.30% of Ti, and the remainder being Al and unavoidable impurities, and the intermediate member contains 0.5 to 1.2% of Mn and the remainder being aluminum and unavoidable impurities, and 0.05 to 1.2% of Mg, if desired, and has a 70 to 130% deformation resistance. The intermediate member may be composed of an aluminum alloy containing 1 to 5% of Zn, 0.5 to 1.2% of Mg, and the remainder being Al and unavoidable impurities.
摘要:
A high-strength aluminum alloy extruded product for heat exchangers which excels in extrudability, allows a thin flat multi-cavity tube to be extruded at a high critical extrusion rate, and excels in intergranular corrosion resistance at a high temperature, and a method of manufacturing the same. The aluminum alloy extruded product includes an aluminum alloy including 0.2 to 1.8% of Mn and 0.1 to 1.2% of Si, having a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.5, and having a content of Cu as an impurity of 0.05% or less, with the balance being Al and impurities, the aluminum alloy extruded product having an electric conductivity of 50% IACS or more and an average particle size of intermetallic compounds precipitating in a matrix of 1 μm or less.
摘要:
A heat exchanger made of aluminum alloys comprising a tube made of an aluminum alloy consisting of 0.2 to 1.0 wt % of Cu and the balance Al and inevitable impurities, and fins jointed to the tube, at least a portion of each fin being formed from another aluminum alloy exhibiting and electrochemical potential value lower than that of the aluminum alloy from which the tube is made, so as to provide a sacrificial corrosion effect. Disclosed also is an aluminum alloy material having superior hot-extrusion characteristics and pitting corrosion resistance suitable for use as the material of heat exchanger tubes, the aluminum alloy material consisting of 0.2 to 1.0 wt % of Cu and the balance Al and inevitable impurities.
摘要:
An aluminum alloy piping material for automotive tubes having excellent tube expansion formability by bulge forming at the tube end and superior corrosion resistance, which is suitably used for a tube connecting an automotive radiator and heater, or for a tube connecting an evaporator, condenser, and compressor. The aluminum alloy piping material is an annealed material of an aluminum alloy containing 0.3 to 1.5% of Mn, 0.20% or less of Cu, 0.10 to 0.20% of Ti, more than 0.20% but 0.60% or less of Fe, and 0.50% or less of Si with the balance being aluminum and unavoidable impurities, wherein the aluminum alloy piping material has an average crystal grain size of 100 μm or less, and Ti-based compounds having a grain size (circle equivalent diameter, hereinafter the same) of 10 μm or more do not exist as an aggregate of two or more serial compounds in a single crystal grain.
摘要:
A vehicle front pillar construction has a hollow member formed integrally to have a closed cross section, having a front supporting a windshield and a pair of sides whose width direction coincides with a direction which follows the line of sight of a driver, a door seal mounted on the side of the hollow member which is situated spaced away from the front and an outer member mounted on the front of the hollow member in such a manner as to cover the hollow member from the door seal to the windshield.