摘要:
The invention relates to a low-cost and high-efficiency absorption-desorption decoupling method for contaminant-CO2 synergistic capture. According to the method, an optimization model of absorption-desorption decoupling control for contaminant-CO2 synergistic capture under different working conditions is built, the optimization objective is to obtain high-purity liquid contaminants and CO2 at low cost and efficiently, and an adaptive penalty function is constructed to transform a solution of a constrained optimization problem into that of an unconstrained optimization problem, thereby controlling parameters in a real-time, precise and stable manner. Moreover, supported by means of flue gas pre-scrubbing and cooling, multi-stage intercooling and column-top demisting, the method of the present invention achieves efficient capture of contaminants and CO2. According to the invention, the absorption process is decoupled from the desorption process, and the coordinated control of temperature-pH-liquid-gas ratio and rich liquid flow-desorption temperature in all cycles is carried out to realize the synergistic capture-regeneration-concentration of contaminants and CO2 with high efficiency and low energy consumption, thereby reducing the high cost of the traditional method where a flue gas cleaning system and a carbon capture system operate separately.
摘要:
The invention relates to an intelligent multi-pollutant ultra-low emission system and a global optimization method thereof. The intelligent multi-pollutant ultra-low emission system comprises a device layer, a sensing layer, a control layer and an optimization layer from bottom to top. The global optimization method comprises: obtaining an accurate description multiple pollutants in the generation, migration, transformation and removal process in multiple devices by means of accurate modeling of a multi-device multi-pollutant simultaneous removal process of the ultra-low emission system; accurately evaluating multi-pollutant emission reduction costs under different loads, coal qualities, pollutant concentrations and operating parameters through a global operating cost evaluation method of the ultra-low emission system; realizing minute-level planning and optimization of emission reductions of a global pollutant emission reduction device under different emission targets through a multi-pollutant, multi-target and multi-condition global operating optimization method; and guaranteeing reliable emission reduction and margin control of the pollutants through an advanced control method for reliable up-to-standard ultra-low emission of the pollutants.
摘要:
Disclosed is a method for regenerating a SCR denitration catalyst assisted by microwaves. The method comprises: (1) a poisoned SCR denitration catalyst is immersed in deionized water, and the SCR denitration catalyst is cleaned by a bubbling method; (2) the SCR denitration catalyst is transferred to a container containing a pore-expanding solution for a soaking treatment; (3) the SCR denitration catalyst is transferred to a microwave device and treated for 1-10 minutes; (4) the SCR denitration catalyst is transferred to a container with an activating liquid and impregnated for 1-4 hours; (5) the SCR denitration catalyst is dried with microwaves for 1-20 minutes; and (6) the SCR denitration catalyst is calcined under conditions of 500-600° C. for 4-7 hours. The present invention has readily available raw materials, is simple and energy-saving in device and process, and is suitable for industrial scale regeneration. The catalyst treated by the method of the present invention has the advantages of loose pore channels, obviously optimized pore structures, significantly improved catalyst surface conditions, high activity, and good economic benefits.
摘要:
The present invention relates to a method for carbon dioxide capture and concentration by partitioned multistage circulation based on mass transfer-reaction regulation. In the present invention, multiple means such as multistage circulating absorption, intelligent multi-factor regulation, pre-washing and cooling, inter-stage cooling, post-stage washing, slurry cleaning, cooling water waste heat utilization, small-particle-size and high-density spraying, external strengthening field such as a thermal field/ultrasonic field/electric field, and catalysis by composite catalyst are adopted, so that the target for low cost, low energy consumption, stability and high efficiency is realized. The secondary pollutants are effectively inhibited while carbon dioxide is efficiently captured; meanwhile, high-efficiency capture, low-energy desorption, and high-purity concentration of carbon dioxide are implemented. From top to bottom in sequence, the multistage circulation is used to remove aerosols, improves carbon capture efficiency, maintains absorption rate, concentrates solution, which reduces the carbon emission reduction cost.