摘要:
Techniques are provided for synchronized radio link control (RLC) and/or media access control (MAC). For example, there is provided a method that involves generating an RLC protocol data unit (PDU) according to a segmentation protocol for maximizing RLC PDU size while allowing the RLC PDU to fit into a defined MAC transport block, the RLC PDU comprising at least one RLC service data unit (SDU) or RLC SDU segment. The method may involve determining a PDU data size for each given RLC SDU. The method may further involve (a) attaching a given RLC SDU to the RLC PDU and (b) delivering the RLC PDU to a lower layer, in response to a SDU data size for the given RLC SDU exceeding a defined size limit.
摘要:
Methods and apparatuses are provided that include decoding multicast broadcast communications where scheduling information related to a multicast channel is not properly received over a control channel. Media access control (MAC) packets can be decoded to determine whether a MAC subheader indicates the packet relates to a logical channel by indicating an associated channel identifier. Where the channel identifier of the MAC packet matches that of a requested logical channel, data in the MAC packet can be provided to a communications layer. Subsequent packets can be processed and provided to the communications layer until a different channel identifier is encountered.
摘要:
Methods and apparatuses are provided that include decoding multicast broadcast communications where scheduling information related to a multicast channel is not properly received over a control channel. Media access control (MAC) packets can be decoded to determine whether a MAC subheader indicates the packet relates to a logical channel by indicating an associated channel identifier. Where the channel identifier of the MAC packet matches that of a requested logical channel, data in the MAC packet can be provided to a communications layer. Subsequent packets can be processed and provided to the communications layer until a different channel identifier is encountered.
摘要:
Certain aspects of the present disclosure propose techniques for avoiding a disruption in synchronous hybrid automatic repeat request operation at system time rollover. The techniques define the behavior of a system before and after the system frame number (SFN) rollover point to ensure a known relationship between a hybrid automatic repeat request (HARQ) process identification number and system time.
摘要:
Certain aspects of the present disclosure propose techniques for avoiding a disruption in synchronous hybrid automatic repeat request operation at system time rollover. The techniques define the behavior of a system before and after the system frame number (SFN) rollover point to ensure a known relationship between a hybrid automatic repeat request (HARQ) process identification number and system time.
摘要:
Systems and methodologies are described that facilitates managing assignment of available random access resources in order to minimize delay and random access load. A number of available random access resources can be defined by a network or a base station, wherein a user equipment can access the number of available random access resources via an information block. The user equipment can be randomly assigned or uniformly assigned to at least one of the number of available random access resources. Additionally, the network can adjust the defined number of available random access resources based upon reported delay, base station load, or historic load data for a base station.
摘要:
Systems and methodologies are described that facilitates managing assignment of available random access resources in order to minimize delay and random access load. A number of available random access resources can be defined by a network or a base station, wherein a user equipment can access the number of available random access resources via an information block. The user equipment can be randomly assigned or uniformly assigned to at least one of the number of available random access resources. Additionally, the network can adjust the defined number of available random access resources based upon reported delay, base station load, or historic load data for a base station.
摘要:
Confusion resulting from assigning the same node identifier to multiple nodes is resolved through the use of confusion detection techniques and the use of unique identifiers for the nodes. In some aspects a network may provide a time gap (e.g., an asynchronous time gap) during which an access terminal may temporarily cease monitoring transmissions from a source node so that the access terminal may acquire a unique identifier from a target node. In some aspects an access terminal may commence handover operations at a target node after determining whether the access terminal is allowed to access the target node. In some aspects a source node may prepare several target nodes for potential handover in the event confusion is detected or likely. Here, the source node may send information relating to the preparation of the potential target nodes to the access terminal whereby the access terminal uses the handover preparation information to initiate a handover at that target node.
摘要:
In a wireless communication system, user equipment (UE) is provided, one or more set of rules are provided for the UE to handle the processing during a measurement gap. In some aspects, the gap measurement may be ignored. In some aspects, the processing is stored and handled at a later in time and gap measurements are performed. Depending on the system, the measurements performed during the gaps may be UE implementation dependent, wherein the UE determines whether to perform the measurement for a given gap. In some instances, the UE may not perform measurements during the gap, thereby giving priority to other processing, such as RACH processing. Depending on the type of processing required (DL-SCH, UL-SCH, TTI bundling, RACH or SR), the UE may store requests and process the measurements during the gap or ignore the gap measurement as if there were no gaps.
摘要:
A method for wireless communications is provided. The method includes receiving a control payload and a check protocol on a wireless link and decoding the control payload and the check protocol. The method also includes analyzing the control payload and the check protocol in view of a scrambling protocol and determining at least one control command based on the control payload, the check protocol, and the scrambling protocol.