摘要:
The long term evolution (LTE) of the third generation partnership project may benefit from a long term evolution local area network (LTE-LAN) system, such as a portable LTE-LAN system. Moreover, an LTE-LAN system may benefit from inter-cell interference (ICI) detection for inter portable LTE-LAN interference. A method can include measuring, with a first local access point, a first power of a first uplink sequence and a second power of a second uplink sequence from at least one user equipment. The method can also include determining that the first local access point and a second local access point are interfering with one another based on a comparison of the first power and the second power.
摘要:
A method including utilizing HARQ process grouping and subframe grouping to carry ACK/NACK transmissions, wherein the HARQ process grouping divides HARQ processes into one or more groups, and the subframe grouping divides a radio frame into one or more groups. The method may further include carrying ACK/NACK transmissions.
摘要:
Communication systems may benefit from a control channel for contention based transmission and collision avoidance. For example, communication systems of the third generation partnership project (3GPP) long term evolution (LTE) and LTE-Advanced may use such control channels for contention based transmission. In particular, such control channels may be valuable with respect to LTE-based local area network (LTE-LAN). A method, according to certain embodiments, may include preparing control information for a contention based physical uplink shared channel. The method may also include transmitting and/or receiving the control information on a physical uplink control channel and a control only physical uplink shared channel, or only on the control only physical uplink shared channel.
摘要:
A macro eNB (MeNB) triggers a small cell (eLA eNB) to transmit a sequence on a second frequency band using a triggering command that indicates a time to transmit the sequence. On a first frequency band the MeNB triggers at least one user equipment UE to detect the sequence on the second band, and this trigger also has a first indication of when the sequence will be transmitted. From a second indication the MeNB receives on the first band from the at least one UE in response to the triggering of the UE the MeNB can determine whether the UE is located proximate to the small cell. The indication may be as little as a single bit indicating whether the UE detected or not the sequence. The first and second bands may be on first and second component carriers that may not be synchronized to one another, and the aperiodic nature of the triggered sequences and detection reports saves UE power.
摘要:
A macro eNB (MeNB) triggers a small cell (eLA eNB) to transmit a sequence on a second frequency band using a triggering command that indicates a time to transmit the sequence. On a first frequency band the MeNB triggers at least one user equipment UE to detect the sequence on the second band, and this trigger also has a first indication of when the sequence will be transmitted. From a second indication the MeNB receives on the first band from the at least one UE in response to the triggering of the UE the MeNB can determine whether the UE is located proximate to the small cell. The indication may be as little as a single bit indicating whether the UE detected or not the sequence. The first and second bands may be on first and second component carriers that may not be synchronized to one another, and the aperiodic nature of the triggered sequences and detection reports saves UE power.
摘要:
Systems and techniques for contention based transmission in a cellular network. A physical uplink shared channel is used for contention based transmission by a device such as a user equipment, based at least in part on information provided by a physical uplink control channel associated with the physical uplink shared channel. In addition, a base station such as an eNodeB may respond to a physical uplink shared channel by providing a common physical downlink shared channel providing acknowledge ment/negative acknowledgement information. In addition, the base station may provide a physical downlink control channel indicating the common physical downlink shared channel.
摘要:
Communication systems may benefit from a control channel for contention based transmission and collision avoidance. For example, communication systems of the third generation partnership project (3GPP) long term evolution (LTE) and LTE-Advanced may use such control channels for contention based transmission. In particular, such control channels may be valuable with respect to LTE-based local area network (LTE-LAN). A method, according to certain embodiments, may include preparing control information for a contention based physical uplink shared channel. The method may also include transmitting and/or receiving the control information on a physical uplink control channel and a control only physical uplink shared channel, or only on the control only physical uplink shared channel.
摘要:
A method including utilizing HARQ process grouping and subframe grouping to carry ACK/NACK transmissions, wherein the HARQ process grouping divides HARQ processes into one or more groups, and the subframe grouping divides a radio frame into one or more groups. The method may further include carrying ACK/NACK transmissions.
摘要:
A method for neighbor cell assisted TDD configurations is described. The method includes receiving, from a serving cell, a first configuration. The first configuration is a cell specific configuration which indicates a first set of individual configurations for each of a plurality of SFs. A second configuration is received from the serving cell. The second configuration is a UE specific configuration which indicates a second set of individual configurations for each of the plurality of SFs. The method includes determining whether a given SF is configured differently in the first configuration than in the second configuration. In response to determining that the given SF is configured differently in the first configuration than in the second configuration, the method also includes communicating, with a neighbor cell, in the given SF as configured in the second configuration. Apparatus and computer readable media are also described.
摘要:
The present invention provides a method for resource allocation, a base station and a mobile communication terminal. The method includes: setting a persistent radio resource set and a complementary resource set pre-allocated to a terminal; determining a radio resource to be used according to the size of a packet to be transmitted by the terminal or the base station. According to one embodiment of the present invention, when a whole packet cannot be transmitted by using the pre-allocated persistent resource, the complementary resource can be allocated to the terminal so that the packet doesn't need to be divided, time delay is reduced, physical layer control information is decreased and the number of accommodated terminal users is increased. The present invention is applicable to any service in which packets arrive periodically, such as VoIP service and real-time service.