摘要:
Methods of forming a self-aligned, selective semiconductor on insulator (SOI) structure and a related structure are disclosed. In one embodiment, a method includes providing a substrate; forming a gate structure over a channel within the substrate; recessing a portion of the substrate adjacent the channel; forming an insulating layer on a bottom of the recessed portion; and forming a semiconductor material above the insulating layer. An upper surface of the semiconductor material may be sloped. A MOSFET structure may include a substrate; a channel; a source region and a drain region adjacent the channel; a gate structure above the channel and the substrate; a shallow trench isolation (STI) distal from the gate structure; a selectively laid insulating layer in at least one of the source region and the drain region; and an epitaxially grown semiconductor material above the selectively laid insulating layer.
摘要:
An example embodiment of a strained channel transistor structure comprises the following: a strained channel region comprising a first semiconductor material with a first natural lattice constant; a gate dielectric layer overlying the strained channel region; a gate electrode overlying the gate dielectric layer; and a source region and drain region oppositely adjacent to the strained channel region, one or both of the source region and drain region are comprised of a stressor region comprised of a second semiconductor material with a second natural lattice constant different from the first natural lattice constant; the stressor region has a graded concentration of a dopant impurity and/or of a stress inducing molecule. Another example embodiment is a process to form the graded impurity or stress inducing molecule stressor embedded S/D region, whereby the location/profile of the S/D stressor is not defined by the recess depth/profile.
摘要:
A structure and method for forming raised source/drain structures in a NFET device and embedded SiGe source/drains in a PFET device. We provide a NFET gate structure over a NFET region in a substrate and PFET gate structure over a PFET region. We provide NFET SDE regions adjacent to the NFET gate and provide PFET SDE regions adjacent to the PFET gate. We form recesses in the PFET region in the substrate adjacent to the PFET second spacers. We form a PFET embedded source/drain stressor in the recesses. We form a NFET S/D epitaxial Si layer over the NFET SDE regions and a PFET S/D epitaxial Si layer over PFET embedded source/drain stressor. The epitaxial Si layer over PFET embedded source/drain stressor is consumed in a subsequent salicide step to form a stable and low resistivity silicide over the PFET embedded source/drain stressor. We perform a NFET S/D implant by implanting N-type ions into NFET region adjacent to the NFET gate structure and into the NFET S/D stressor Si layer to form the raised NFET source/drains.
摘要翻译:用于在NFET器件中形成凸起的源极/漏极结构并在PFET器件中形成嵌入的SiGe源极/漏极的结构和方法。 我们在衬底上的NFET区域和PFET区域上的PFET栅极结构提供NFET栅极结构。 我们提供与NFET栅极相邻的NFET SDE区域,并提供与PFET栅极相邻的PFET SDE区域。 我们在邻近PFET第二间隔物的衬底中的PFET区域中形成凹陷。 我们在凹槽中形成PFET嵌入式源极/漏极应力器。 我们在NFET SDE区域上形成NFET S / D外延Si层,并在PFET嵌入式源极/漏极应力器上形成PFET S / D外延Si层。 在随后的自对准硅化物步骤中,在PFET嵌入式源极/漏极应力源上的外延Si层被消耗,以在PFET嵌入式源极/漏极应力器上形成稳定和低电阻率的硅化物。 我们通过将N型离子注入到与NFET栅极结构相邻的NFET区域中并进入NFET S / D应力Si层来形成NFET S / D注入,以形成升高的NFET源极/漏极。
摘要:
There is provided a method of manufacturing a field effect transistor (FET) that includes the steps of forming a gate structure on a semiconductor substrate, and forming a recess in the substrate and embedding a second semiconductor material in the recess. The gate structure includes a gate dielectric layer, conductive layers and an insulating layer. Forming said gate structure includes a step of recessing the conductive layer in the gate structure, and the steps of recessing the conductive layer and forming the recess in the substrate are performed in a single step. There is also provided a FET device.
摘要:
An example embodiments are structures and methods for forming an FET with embedded stressor S/D regions (e.g., SiGe), a doped layer below the embedded S/D region adjacent to the isolation regions, and a stressor liner over reduced spacers of the FET gate. An example method comprising the following. We provide a gate structure over a first region in a substrate. The gate structure is comprised of gate dielectric, a gate, and sidewall spacers. We provide isolation regions in the first region spaced from the gate structure; and a channel region in the substrate under the gate structure. We form S/D recesses in the first region in the substrate adjacent to the sidewall spacers. We form S/D stressor regions filling the S/D recesses. The S/D stressor regions can be thicker adjacent to the gate structure than adjacent to the isolation regions; We implant dopant ions into the S/D stressor regions and into the substrate below the S/D stressor regions adjacent to the isolation regions to form upper stressor doped regions.
摘要:
A method of manufacturing a self-aligned inverted T-shaped isolation structure. An integrated circuit isolation system including providing a substrate, forming a base insulator region in the substrate, and depositing an insulator column having a narrower width than the base insulator region on the base insulator region.
摘要:
The embodiments provide a structure and a method of manufacturing a semiconductor structure that has a different material in the area where PMOS devices will be formed than in the area where NMOS devices will be formed which is characterized as follows. An embodiment comprises the following steps. A substrate is provided. The substrate has a NMOS area and a PMOS area. We form a NMOS mask over the NMOS area. We form a first semiconductor layer over the PMOS area. We remove the mask. We form a second semiconductor layer over the NMOS area. Then we form an isolation region in the substrate between at least portions of the NMOS and the PMOS areas. We form PMOS devices in the PMOS area and form NMOS devices in the NMOS area.
摘要:
The example embodiments disclose devices and methods to prevent silicide strapping of the Source/Drain to Body in semiconductor devices with S/D stressor. We provide isolation regions in the substrate and a gate structure over the substrate. We form recesses in the substrate adjacent to the gate structure with disposable spacers and adjacent to the isolation regions. We provide stressor regions filling the recesses. The stress region can have a pit adjacent the isolation regions. We form stressor spacers at least partially in the pit on the sidewalls of the stressor regions. We form silicide regions over the stressor regions. The spacer on the stressor regions sidewalls inhibit the formation of silicide at the stressor region edge during the silicide process, thus preventing silicide strapping of the Source/Drain to Body.
摘要:
An example method of forming a bitline contact region and bitline contact plug for a memory device using a laser irradiation activation process. An example embodiment comprises: providing a substrate having a logic region and a SONOS memory region. We form in the memory region, a memory transistor comprised of a memory gate dielectric, a memory gate electrode, memory LDD regions, memory spacers on the sidewalls of the memory gate electrode. We then perform a “memory Cell Source Line” implant to form a memory source line in the memory region adjacent to the memory gate electrode. We form silicide over the memory gate electrode and on the memory source line. We form an ILD dielectric layer over the substrate surface. We form a contact opening in the ILD dielectric layer over the memory Drain in the memory area. We etch an opening in the substrate in the drain region adjacent to the memory gate electrode. The opening exposes the memory cell first well and exposes the memory drain on the sidewall of the opening. We perform a bitline contact plug implant to from a doped contact region under the opening. We activate the doped contact region to form an activated doped contact region using a laser irradiation process. The laser irradiation process improves the electrical activation of the doped contact region without interfering with the silicide and S/D regions of the logic devices.
摘要:
Semiconductor devices and methods of manufacturing thereof are disclosed. Isolation regions are formed that include a stress-altering material at least partially lining a trench formed within a workpiece. The isolation regions include an insulating material disposed over the stress-altering material.