摘要:
One embodiment of the present invention provides a system for setting uplink power-control parameters for a cell within a wireless network. During operation, the system receives parameters associated with uplink power for a plurality of user devices within the cell over a predetermined time interval, and averages the received parameters over the user devices and the predetermined time interval to obtain an averaged parameter. The system then determines a set of power-control parameters for the cell based on the averaged parameter, and sends the set of power-control parameters to the user devices to allow the user devices to control transmission power using the set of power-control parameters.
摘要:
One embodiment of the present invention provides a system for setting uplink power-control parameters for a cell within a wireless network. During operation, the system receives parameters associated with uplink power for a plurality of user devices within the cell over a predetermined time interval, and averages the received parameters over the user devices and the predetermined time interval to obtain an averaged parameter. The system then determines a set of power-control parameters for the cell based on the averaged parameter, and sends the set of power-control parameters to the user devices to allow the user devices to control transmission power using the set of power-control parameters.
摘要:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
摘要:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
摘要:
A system and method for self-organized inter-cell interference coordination are provided. A method for controller operations includes receiving signal power measurements at a controller, determining an interference level based on the signal power measurements, generating relationship information based on the interference level, and determining frequency reuse modes for communications controllers controlled by the controller based on the relationship information.
摘要:
A system and method for automatic fractional frequency reuse (FFR) planning are provided. A method for controller operations includes determining a group of frequency reuse modes, assigning at least one frequency reuse mode to a controller based on mutual relationship information, where the at least one frequency reuse mode is from the group of frequency reuse modes, and sharing the at least one frequency reuse mode with communications controllers coupled to the controller.
摘要:
A system and method for automatic fractional frequency reuse (FFR) planning are provided. A method for controller operations includes determining a group of frequency reuse modes, assigning at least one frequency reuse mode to a controller based on mutual relationship information, where the at least one frequency reuse mode is from the group of frequency reuse modes, and sharing the at least one frequency reuse mode with communications controllers coupled to the controller.
摘要:
A system and method for self-organized inter-cell interference coordination are provided. A method for controller operations includes receiving signal power measurements at a controller, determining an interference level based on the signal power measurements, generating relationship information based on the interference level, and determining frequency reuse modes for communications controllers controlled by the controller based on the relationship information.
摘要:
In order to minimize the control signaling overhead associated with transmitting CQI data from mobile stations to base stations in wireless communication networks supporting MU-MIMO, the CQI during MU-MIMO operation is estimated based on SU-MIMO CQI data, mobile station geometry data, and mobile station PMI (Precoding Matrix Index) data. More particularly, the base station maintains and updates a knowledge pool that correlates geometry data and learned impact of interfering precoder data to degradation of CQI values responsive to switching from SU-MIMO operation to MU-MIMO operations. Then, when the base station switches from SU-MIMO operation to MU-MIMO operation, it consults the knowledge pool to predict the degradation in CQI and subtracts them from the known, pre-switching SU-MIMO CQI feedback data for each relevant mobile station to predict the post-switching MU-MIMO CQIs for that mobile station.
摘要:
Some embodiments of the present disclosure provide for use of a linear chirp signal as a basis for a sensing signal. Modification of the linear chirp signal by a signature function can allow a receiver of the sensing signal to determine an identity for a source of the sensing signal. Accordingly, upon processing the received sensing signal to obtain path parameter estimates, the receiver can direct a transmission of an indication of the path parameter estimates to the source of the sensing signal. Aspects of the present application relate to performing multi-node, multi-path channel estimation on the basis of processing the received sensing signal. Conveniently, the processing is performed with low complexity.