摘要:
Methods are disclosed for forming shaped structures of silicon-containing material with ion implantation and an etching process which is selective to silicon-containing material implanted to a certain concentration of ions or with an etching process which is selective to relatively unimplanted silicon-containing material. In general, the methods initially involve providing a layer of silicon-containing material such as polysilicon or epitaxial silicon on a semiconductor substrate. The layer of silicon-containing material is then masked, and ions are implanted into exposed portions of the layer of silicon-containing material. The mask is removed, and the aforementioned selective etching process is conducted to result in one of an implanted and a relatively unimplanted portion of the layer of silicon-containing material being etched away and the other left standing to form a shaped structure of silicon-containing material. One preferred selective etching process uses an etchant solution comprising a selected weight percentage of tetramethyl ammonium hydroxide in deionized water. The etchant solution etches relatively unimplanted silicon-containing material implanted up to 60 times faster than it etches silicon-containing material implanted to beyond a threshold concentration of ions. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and either the high stress masked portion or the low stress unmasked portion of the material is selectively removed, preferably by an etching process. The portion of the material not removed remains and forms a shaped structure. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and either the high stress masked portion or the low stress unmasked portion of the material is selectively removed, preferably by an etching process. The portion of the material not removed remains and forms a shaped structure. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and the high stress masked portion of the material is selectively removed, preferably by an etching process. The low stress portion of the material remains and forms a shaped structure. One preferred selective etching process uses a basic etchant. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and the high stress masked portion of the material is selectively removed, preferably by an etching process. The low stress portion of the material remains and forms a shaped structure. One preferred selective etching process uses a basic etchant. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and either the high stress masked portion or the low stress unmasked portion of the material is selectively removed, preferably by an etching process. The portion of the material not removed remains and forms a shaped structure. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
摘要:
A method of forming silicon storage nodes on silicon substrates, wherein the silicon storage nodes have a roughened surface, which does not result in deposition of silicon atoms over the entire surface of the silicon substrate and which does not require the silicon storage nodes to be comprised of amorphous silicon prior to being subjected to the surface-roughening treatment.
摘要:
A silicon structure is formed that includes a free-standing wall having opposing roughen ed inner and outer surfaces using ion implantation and an unplanted silicon etching process which is selective to implanted silicon. In general, the method provides a recess in a layer of insulating material into which a polysilicon layer is formed. A layer of HSG or CSG polysilicon is subsequently formed on the polysilicon layer, after which ions are implanted into both the layer of HSG or CSG polysilicon and the underlying polysilicon layer. The aforementioned selective etching process is then conducted to result in a relatively unplanted portion being etched away and a highly implanted portion being left standing to form the free-standing wall. The free-standing wall has an inner surface that is roughen ed by the layer of HSG or CSG polysilicon. The free-standing wall also has a roughen ed outer surface to which has been transferred a near-impression image topography of the opposing inner surface.
摘要:
A method of forming silicon storage nodes on silicon substrates, wherein the silicon storage nodes have a roughened surface, which does not result in deposition of silicon atoms over the entire surface of the silicon substrate and which does not require the silicon storage nodes to be comprised of amorphous silicon prior to being subjected to the surface-roughening treatment.
摘要:
A silicon structure is formed that includes a free-standing wall having opposing roughened inner and outer surfaces using ion implantation and an unimplanted silicon etching process which is selective to implanted silicon. In general, the method provides a recess in a layer of insulating material into which a polysilicon layer is formed. A layer of HSG or CSG polysilicon is subsequently formed on the polysilicon layer, after which ions are implanted into both the layer of HSG or CSG polysilicon and the underlying polysilicon layer. The aforementioned selective etching process is then conducted to result in a relatively unimplanted portion being etched away and a highly implanted portion being left standing to form the free-standing wall. The free-standing wall has an inner surface that is roughened by the layer of HSG or CSG polysilicon. The free-standing wall also has a roughened outer surface to which has been transferred a near-impression image topography of the opposing inner surface. The near-impression image topography of the outer and inner surfaces are due to the grains of the layer of HSG or CSG polysilicon which, during ion implantation and selective etching, transfer the topography of the inner surface to the outer surface so as to also roughened the outer surface. One preferred etching process uses an etchant comprising a selected volume of tetramethyl ammonium hydroxide in solution, which etches unimplanted silicon up to 60 times faster than implanted silicon. A capacitor storage node formed with the method has an increased surface area electrically connected with an underlying silicon substrate.