摘要:
A static random access memory cell with metal fill to form capacitors for increasing the capacitance of the memory cell. More specifically, a semiconductor device including a structure having an upper surface and a contact surface formed at the upper surface of the structure. A dielectric material is formed over the contact surface with a first conductive node and a second conductive node extending beyond the dielectric material. Dielectric spacers are formed around the first and second conductive nodes and conductive elements are formed between the dielectric spacers. The conductive elements and spacers form capacitors without implementing additional masking steps.
摘要:
A method of forming a field effect transistor includes forming a channel region within bulk semiconductive material of a semiconductor substrate. Source/drain regions are formed on opposing sides of the channel region. An insulative dielectric region is formed within the bulk semiconductive material proximately beneath at least one of the source/drain regions. A method of forming a field effect transistor includes providing a semiconductor-on-insulator substrate, said substrate comprising a layer of semiconductive material formed over a layer of insulative material. All of a portion of the semiconductive material layer and all of the insulative material layer directly beneath the portion are removed thereby creating a void in the semiconductive material layer and the insulative material layer. Semiconductive channel material is formed within the void. Opposing source/drain regions are provided laterally proximate the channel material. A gate is formed over the channel material. Integrated circuitry includes a bulk semiconductor substrate. A field effect transistor thereon includes a gate, a channel region in the bulk semiconductor substrate, and source/drain regions within the substrate on opposing sides of the channel region. A field isolation region is formed in the bulk semiconductor substrate and laterally adjoins with one of the source/drain regions. The field isolation region includes a portion which extends beneath at least some of the one source/drain region. Other aspects are contemplated.
摘要:
A dual-polycide semiconductor structure and method for forming the same having reduced dopant cross-diffusion. A conductive layer is formed over a polysilicon layer having a first region doped with a first dopant and a second region adjoining the first region at an interface doped with a second dopant. A region of discontinuity is then formed in the conductive layer located away from the interface. The conductive layer formed over the polysilicon gate overlaps the interface to provide electrical continuity between the first and second regions of the polysilicon gate, but also includes a region of discontinuity to reduce dopant cross-diffusion.
摘要:
Methods for making a semiconductor structure are discussed. The methods include forming openings in a high-density area and a high-speed area, and forming a metallization layer simultaneously into the high-density area and the high-speed area. The metallization layer includes a combination of substances and compounds that reduce vertical resistance, reduce horizontal resistance, and inhibit cross-diffusion.
摘要:
A method of forming a field effect transistor includes forming a channel region within bulk semiconductive material of a semiconductor substrate. Source/drain regions are formed on opposing sides of the channel region. An insulative dielectric region is formed within the bulk semiconductive material proximately beneath at least one of the source/drain regions. A method of forming a field effect transistor includes providing a semiconductor-on-insulator substrate, said substrate comprising a layer of semiconductive material formed over a layer of insulative material. All of a portion of the semiconductive material layer and all of the insulative material layer directly beneath the portion are removed thereby creating a void in the semiconductive material layer and the insulative material layer. Semiconductive channel material is formed within the void. Opposing source/drain regions are provided laterally proximate the channel material. A gate is formed over the channel material. Integrated circuitry includes a bulk semiconductor substrate. A field effect transistor thereon includes a gate, a channel region in the bulk semiconductor substrate, and source/drain regions within the substrate on opposing sides of the channel region. A field isolation region is formed in the bulk semiconductor substrate and laterally adjoins with one of the source/drain regions. The field isolation region includes a portion which extends beneath at least some of the one source/drain region. Other aspects are contemplated.
摘要:
A method of forming a field effect transistor includes forming a channel region within bulk semiconductive material of a semiconductor substrate. Source/drain regions are formed on opposing sides of the channel region. An insulative dielectric region is formed within the bulk semiconductive material proximately beneath at least one of the source/drain regions. A method of forming a field effect transistor includes providing a semiconductor-on-insulator substrate, said substrate comprising a layer of semiconductive material formed over a layer of insulative material. All of a portion of the semiconductive material layer and all of the insulative material layer directly beneath the portion are removed thereby creating a void in the semiconductive material layer and the insulative material layer. Semiconductive channel material is formed within the void. Opposing source/drain regions are provided laterally proximate the channel material. A gate is formed over the channel material. Integrated circuitry includes a bulk semiconductor substrate. A field effect transistor thereon includes a gate, a channel region in the bulk semiconductor substrate, and source/drain regions within the substrate on opposing sides of the channel region. A field isolation region is formed in the bulk semiconductor substrate and laterally adjoins with one of the source/drain regions. The field isolation region includes a portion which extends beneath at least some of the one source/drain region. Other aspects are contemplated.
摘要:
Methods for making a semiconductor structure are discussed. The methods include forming openings in a high-density area and a high-speed area, and forming a metallization layer simultaneously into the high-density area and the high-speed area. The metallization layer includes a combination of substances and compounds that reduce vertical resistance, reduce horizontal resistance, and inhibit cross-diffusion.
摘要:
Integrated circuitry includes a bulk semiconductor substrate. A field effect transistor thereon includes a gate, a channel region in the bulk semiconductor substrate, and source/drain regions within the substrate on opposing sides of the channel region. A field isolation region is formed in the bulk semiconductor substrate and laterally adjoins with one of the source/drain regions. The field isolation region includes a portion which extends beneath at least some of the one source/drain region. Other aspects are contemplated.
摘要:
According to the present invention, an ultrathin buried diffusion barrier layer (UBDBL) is formed over all or part of the doped polysilicon layer of a polysilicide structure composed of the polycrystalline silicon film and an overlying film of a metal, metal silicide, or metal nitride. More specifically, according to one embodiment of the present invention, a memory cell is provided comprising a semiconductor substrate, a P well, an N well, an N type active region, a P type active region, an isolation region, a polysilicide gate electrode structure, and a diffusion barrier layer. The P well is formed in the semiconductor substrate. The N well is formed in the semiconductor substrate adjacent to the P well. The N type active region is defined in the P well and the P type active region is defined in the N well. The isolation region is arranged to isolate the N type active region from the P type active region. The polysilicide gate electrode structure is composed of a polycrystalline silicon film and an overlying metal, metal silicide, or metal nitride film. The polycrystalline silicon film comprises an N+ polysilicon layer formed with the N type active region and a P+ polysilicon layer formed with the P type active region. The diffusion barrier layer is formed in the polysilicide gate electrode structure over a substantial portion of the polycrystalline silicon film between the polycrystalline silicon film and the metal, metal silicide, or metal nitride film.
摘要:
Methods for making a semiconductor structure are discussed. The methods include forming openings in a high-density area and a high-speed area, and forming a metallization layer simultaneously into the high-density area and the high-speed area. The metallization layer includes a combination of substances and compounds that reduce vertical resistance, reduce horizontal resistance, and inhibit cross-diffusion.