Abstract:
The present subject matter relates to antenna systems, devices, and methods that are designed to avoid the degradation of the end-fire radiation pattern of the array when a piece of metal is added obstructing the direction of the main beam. A parasitic radiator is positioned in proximity to the blocking structure and configured to couple at least part of the reflected radiation pattern and radiate toward the desired end-fire direction.
Abstract:
The present subject matter relates to devices, systems, and methods for beam steering in which a configurable antenna assembly includes a first antenna element configured to radiate in a first broadside direction and a second antenna element configured to radiate in an endfire direction. In some embodiments, the configurable antenna assembly further includes a third antenna element configured to radiate in a second broadside direction substantially opposite to the first broadside direction. Such devices, systems, and methods can further be configured such that one of the antenna elements is selectively connected to a common signal feed.
Abstract:
Devices, systems, and methods in which antenna elements are positioned together as an array at a corner of a mobile device, at least two of the antenna elements being oriented to provide beams in different directions with respect to the corner of the mobile device.
Abstract:
Devices, systems, and methods for a hybrid high gain antenna in which a plurality of antennas are mounted substantially symmetrically such that the antennas collectively provide 180° of antenna coverage for a surface above the antennas. In some embodiments, the hybrid high gain antenna system can be mounted on a mobile device with sufficient inclinations such that the antennas collectively provide approximately 180° of antenna coverage. In some embodiments, the hybrid high gain antenna system is configured to reach a gain of between about 10 dBi and 12 dBi at a target frequency of between about 26 GHz and 30 GHz.
Abstract:
Antenna systems, devices, and methods for providing both end-fire mm-wave high-frequency signals and low-frequency RF signals from a collocated antenna array in which at least one high-frequency antenna element and a low-frequency antenna element are spaced apart from one another. Grating strips are positioned between the high-frequency antenna elements and the low-frequency antenna element, the grating strips being spaced apart from one another by a defined spacing. The grating strips are configured such that a signal wave from the high-frequency antenna element propagates through the low-frequency antenna element.
Abstract:
The present subject matter relates to antenna systems, devices, and methods that provide efficient coverage of low frequency bands (e.g., 700 MHz-bands and 600 MHz-bands) for the new generations of mobile communication. For example, a dual-resonant radiating system can include a ground plane, a radiating coupler spaced apart from but in communication with the ground plane, and a ground plane extension in communication with the ground plane. In this arrangement, one or both of the radiating coupler and the ground plane extension are tunable to tune a dual-resonance frequency response.
Abstract:
Devices, systems, and methods for a hybrid high gain antenna in which a plurality of antennas are mounted substantially symmetrically such that the antennas collectively provide 180° of antenna coverage for a surface above the antennas. In some embodiments, the hybrid high gain antenna system can be mounted on a mobile device with sufficient inclinations such that the antennas collectively provide approximately 180° of antenna coverage. In some embodiments, the hybrid high gain antenna system is configured to reach a gain of between about 10 dBi and 12 dBi at a target frequency of between about 26 GHz and 30 GHz.
Abstract:
Wideband phased mobile antenna array devices, systems, and methods include antenna elements arranged in a substantially linear array and positioned and adjusted on a substrate to achieve an aggregate radiation pattern in an end-fire direction. In some embodiments, each antenna element includes two pairs of antenna arms, a pair on either side of the substrate. In some embodiments, each pair of antenna arms are configured to be adjusted and positioned symmetrically to generate the end-fire radiation pattern. In some embodiments, each of the antenna elements in the linear array is spaced apart from each other by a distance that is equal to approximately λ/2, where λ is a wavelength associated with a frequency within a desired operating frequency range of the antenna system.
Abstract:
The present subject matter relates to antenna systems, devices, and methods that are designed to avoid the degradation of the end-fire radiation pattern of the array when a piece of metal is added obstructing the direction of the main beam. A parasitic radiator is positioned in proximity to the blocking structure and configured to couple at least part of the reflected radiation pattern and radiate toward the desired end-fire direction.
Abstract:
The present subject matter relates to devices, systems, and methods for beam steering in which a configurable antenna assembly includes a first antenna element configured to radiate in a first broadside direction and a second antenna element configured to radiate in an endfire direction. In some embodiments, the configurable antenna assembly further includes a third antenna element configured to radiate in a second broadside direction substantially opposite to the first broadside direction. Such devices, systems, and methods can further be configured such that one of the antenna elements is selectively connected to a common signal feed.