摘要:
A lighting system is provided with a device for emitting light in response to receiving electrical current, a microprocessor and a current source. The microprocessor is programmed to provide a color control signal and an intensity control signal that are independently controllable relative to each other. The current source is adapted to provide the electrical current to the device at an amplitude based on the color control signal and at an on-off timing based on the intensity control signal.
摘要:
A system and method for data conversion includes a transmitter configured to receive high-speed data and convert it into wireless low-speed data for output to a receiver. The transmitter includes a radio device and one or more processors for converting the high-speed data to low-speed data. Once received by the receiver, the low-speed data may be output for use directly by equipment which uses such data, or it may be reconverted to high-speed data and output to equipment that utilizes high-speed data signals.
摘要:
A system and method for controlling a lighting system may be integrated into a lighting fixture or into a stand-alone device. A plurality of inputs defining one or more lighting parameters may be received. The inputs may include input signals characterized by at least two different control protocols. The input signals may be combined into an output signal characterized by a single control protocol, and the output signal used to control the lighting system.
摘要:
A system and method for controlling a lighting system may be integrated into a lighting fixture or into a stand-alone device. A plurality of inputs defining one or more lighting parameters may be received. The inputs may include input signals characterized by at least two different control protocols. The input signals may be combined into an output signal characterized by a single control protocol, and the output signal used to control the lighting system.
摘要:
A thermal management system for an electrical component includes a printed circuit board (PCB) capable of receiving the electrical component on a first side of the PCB. An elongate member has one end attached to a second side of the PCB, and another end disposed away from the PCB. The elongate member also has an open interior that facilitates fluid communication between the two ends. One of the ends defines an at least partially closed boundary on the PCB. The PCB includes an aperture disposed therethrough proximate the boundary such that fluid communication is facilitated between the first side of the PCB and the second side of the PCB, and along at least a portion of the elongate member.