Abstract:
In a secondary battery state of health (SOH) estimation method, which estimates the state of health (SOH) of a secondary battery by use of a Weibull law, Weibull coefficients mf, ηf corresponding to a float capacity retention rate, and the float capacity retention rate represented by the following formula (1) are obtained from the measurement values of a float test for determining the capacity retention rate; Weibull coefficients mc, ηc corresponding to a cycle capacity retention rate, and the cycle capacity retention rate represented by the following formula (2) are obtained from the measurement values of a cycle test for determining the capacity retention rate; and the capacity retention rate in a period t or at a cycle number N is estimated from the float capacity retention rate and the cycle capacity retention rate of the secondary battery. [ Equation 1 ] Float capacity retention rate = exp { - ( t η f ) m f } ( 1 ) Cycle capacity retention rate = exp { - ( N η c ) m c } ( 2 )
Abstract:
A method of the present invention for manufacturing a lithium-ion cell comprises the step of impregnating a porous positive-electrode active material layer or a porous negative-electrode active material layer with an ionic liquid electrolyte. The ionic liquid electrolyte includes: an ionic liquid comprising an anion and a cation; and a lithium salt dissolved in the ionic liquid. The anion is bis(fluorosulfonyl)imide ion. The lithium salt is lithium bis(fluorosulfonyl)imide or lithium bis(trifluoromethansulfonyl)imide. The ionic liquid electrolyte contains the lithium salt at a concentration of 1.6 mol/L to 3.2 mol/L inclusive. The step of impregnation with the ionic liquid electrolyte is the step of impregnating the positive-electrode active material layer or the negative-electrode active material layer with the ionic liquid electrolyte at a temperature of 50° C. to 100° C. inclusive.
Abstract:
The present invention provides a test battery case which is capable of conducting an internal short-circuit test with accuracy. The test battery case according to the present invention includes a container for housing a power generating element, and a closing member detachably secured to the container, wherein the container has an opening for the internal short-circuit test, the opening being closed by the closing member.
Abstract:
Techniques effectively prevent an overcurrent from occurring in a system comprising assembled batteries connected in parallel to a power supply line, when a given assembled battery is connected to the power supply line. Multiple battery units are each configured such that they can be connected to a power supply line. Each battery unit includes a battery cell group configured including multiple battery cells, a switching unit arranged between the power supply line and the battery cell group so as to control a current that flows between the power supply line and the battery cell group, and a control unit that controls the switching unit.
Abstract:
A method of the present invention for manufacturing a lithium-ion cell comprises the step of impregnating a porous positive-electrode active material layer or a porous negative-electrode active material layer with an ionic liquid electrolyte. The ionic liquid electrolyte includes: an ionic liquid comprising an anion and a cation; and a lithium salt dissolved in the ionic liquid. The anion is bis(fluorosulfonyl)imide ion. The lithium salt is lithium bis(fluorosulfonyl)imide or lithium bis(trifluoromethansulfonyl)imide. The ionic liquid electrolyte contains the lithium salt at a concentration of 1.6 mol/L to 3.2 mol/L inclusive. The step of impregnation with the ionic liquid electrolyte is the step of impregnating the positive-electrode active material layer or the negative-electrode active material layer with the ionic liquid electrolyte at a temperature of 50° C. to 100° C. inclusive.
Abstract:
The present invention provides a positive electrode for non-aqueous electrolyte secondary battery, having a novel overcharge protective function. The positive electrode for non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode active material layer including a plurality of positive electrode active material particles, wherein the positive electrode active material layer comprises: a carbonaceous coating film formed on a surface of each of the positive electrode active material particles; and 0% by weight or more and 20% by weight or less of a conductive auxiliary agent disposed between the plurality of positive electrode active material particles, and at least one of the carbonaceous coating film and the conductive auxiliary agent is graphitizable carbon.
Abstract:
A production apparatus is equipped with a supply unit which has a cassette member 50 for bearing a predetermined number of positive electrode plates or negative electrode plates, and which batchwise supplies a plurality of positive electrode plates 5 or negative electrode plates 6 placed on the cassette member 50 to respective electrode plate conveying trays 19 of an electrode plate conveying member 20.
Abstract:
The present invention provides a negative electrode for a nonaqueous electrolyte secondary battery, the negative electrode being produced at reduced costs, having a high graphite packing density, and having stable quality. The negative electrode according to the present invention includes a negative-electrode current collector; and a negative-electrode active material layer provided on the negative-electrode current collector, wherein the negative-electrode active material layer includes: flaky graphite particles formed by graphitizing needle coke; particulate graphite particles formed by graphitizing coke; and a binder.
Abstract:
The present invention provides a positive electrode for a non-aqueous electrolyte secondary battery in which the charge/discharge rate of a secondary battery is increased by increasing the discharge/discharge rate of the positive electrode as a result of increasing the rate of incorporation and release of lithium ions in olivine-type phosphorous complex compound particles, a non-aqueous electrolyte secondary battery provided with this positive electrode for a non-aqueous electrolyte secondary battery, and a battery module provided with this non-aqueous electrolyte secondary battery. The positive electrode for a non-aqueous electrolyte secondary battery of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing olivine-type lithium complex compound particles having a carbonaceous film formed on the surface thereof as a positive electrode active material, in which the coverage factor of the carbonaceous film relative to the surface area of the olivine-type lithium complex compound particles is preferably 95% or more, and the packed density of the olivine-type lithium complex compound particles in this positive electrode for a non-aqueous electrolyte secondary battery is preferably 0.90 g/cm3 to 1.09 g/cm3.
Abstract translation:本发明提供一种非水电解质二次电池用正极,其特征在于,通过增加所述正极的放电/放电率,通过增加所述正极的放电/放电率来提高二次电池的充放电率 的橄榄石型磷配位化合物粒子中的锂离子,设置有该非水电解质二次电池用正极的非水电解质二次电池以及具备该非水电解质二次电池的电池模块。 本发明的非水电解质二次电池用正极是含有在表面形成有碳膜作为正极活性物质的橄榄石型锂络合物粒子的非水电解质二次电池用正极 ,其中碳质膜相对于橄榄石型锂络合物颗粒的表面积的覆盖系数优选为95%以上,在该正极中的橄榄石型锂络合物粒子的填充密度为 非水电解质二次电池优选为0.90g / cm 3至1.09g / cm 3。
Abstract:
A sealed battery according to the present invention includes an electrode assembly including a positive electrode, a negative electrode, and a separator; an electrolyte; a case; a first lead terminal; and a second lead terminal, wherein each of the first and second lead terminals includes an electrode connection section, an external connection section, and a sealing section, the first or the second lead terminal includes a conduction section, the conduction section is provided to be at least partially in contact with an outer surface of the case directly or indirectly, the case has a conductivity or an apparent thermal conductivity of from 10 W/(m·K) to 250 W/(m·K) inclusive, and the electrode assembly and the electrolyte contained in the case have an effective thermal conductivity of from 10 W/(m·K) to 100 W/(m·K) inclusive in a steady state.