Abstract:
An active pen is provided. The active pen includes a first transceiver and a first control circuit. The first transceiver is configured to receive uplink information and send corresponding touch coordinate information, first-type downlink information, and second-type downlink information through at least one data channel. The first control circuit is coupled to the first transceiver. The first control circuit generates the touch coordinate information and multiple downlink information based on the uplink information and classifies the downlink information into the first-type downlink information or the second-type downlink information according to the amount of data and a required transmission frequency thereof. A touch system including the active pen is also provided.
Abstract:
A mutual capacitive touch panel includes a first electrode layer and a second electrode layer. The first electrode layer includes a plurality of first electrode series and a plurality of second electrode series. The second electrode layer includes a plurality of electrode strips, and each electrode strip crosses the first electrode series and the second electrode series. Each first electrode series includes a plurality of first electrodes and a plurality of second electrodes electrically connected with each other, and each first electrode and a corresponding one of the second electrodes are disposed abreast and form an electrode set. Each second electrode series includes a plurality of third electrodes electrically connected with each other, and each electrode set and each third electrode are arranged alternately along a direction.
Abstract:
A mutual capacitive touch panel includes a first electrode layer and a second electrode layer. The first electrode layer includes a plurality of electrode groups and a plurality of electrode groups arranged in an array. The first electrode groups located at the same column are electrically connected to a form a first electrode series, and the second electrode groups located at the same column are electrically connected to form a second electrode series. The second electrode layer includes a plurality of electrode strip groups insulated from one another and sequentially arranged along a column direction of the array, wherein each of the electrode strip groups extends along a row direction of the array and overlaps, a perpendicular projection direction, electrode groups of two adjacent rows, and two adjacent of the electrode strip groups overlap, in the perpendicular projection direction, the electrode groups of the same row.
Abstract:
A self-capacitive touch device includes a transparent substrate, multiple sensing electrodes and multiple trace lines. The sensing electrodes are alternately disposed on the transparent substrate, and each of the sensing units has a polygonal planar contour having M sides, where M is a positive integer equal to or greater than 4. A side of each of the sensing electrodes corresponds to sides of at least two of the remaining sensing electrodes. The trace lines are electrically connected to the sensing electrodes in a way that a part of segments of the trace lines are disposed in an active region of the self-capacitive touch device.
Abstract:
A control method for a touch display device including a display panel is provided. The display panel includes multiple first gate lines and multiple second gate lines respectively corresponding to a first field and a second field of a frame, and multiple sensing electrodes for touch sensing. Within one single frame period, the control method includes: scanning the first gate lines to update the first field; controlling the sensing electrodes to perform touch sensing and providing a first touch report; scanning the second gates lines to update the second field; and controlling the sensing electrodes to perform touch sensing and providing a second touch report. At least one of the first gates lines is located between two of the second gate lines, and at least one of the second gate lines is located between two of the first gate lines.
Abstract:
The present disclosure provides a high-voltage level conversion circuit at least comprising a first NMOS transistor, a first PMOS transistor, a second NMOS transistor, a second PMOS transistor, a third PMOS transistor, a third NMOS transistor, a fourth PMOS transistor and a fourth NMOS transistor for receiving an input signal have a first voltage level and a second voltage level and converting the input signal to an output signal having a third voltage level and a fourth voltage level. Compared to conventional high-voltage level conversion circuits the provided high-voltage level conversion circuit occupies less circuit area.
Abstract:
A current-to-voltage converter comprises a gain circuit, a flip circuit, and a chopper circuit. The gain circuit receives an input current, and amplifies the input current to generate an amplified current. The flip circuit receives the amplified current, and uses the amplified current to charge or discharge a capacitor thereof according to a charge signal and a discharge signal, so as to generate an output voltage, wherein before using the amplified current to charge or discharge the capacitor, the flip circuit resets the output voltage respectively to a charge reset voltage and a discharge reset voltage according to a charge reset signal and a discharge reset signal. When the capacitor is charged, the chopper circuit samples and holds the output voltage to generate a recovered voltage. When the capacitor is discharged, the chopper circuit samples, holds, and flips the output voltage to generate the recovered voltage.
Abstract:
A method for backlight control includes: receiving a display synchronization signal; generating a backlight control signal according to the display synchronization signal; and driving a backlight source according to the backlight control signal. An apparatus for backlight control includes: a signal receiving circuit, for receiving a display synchronization signal; a control circuit, coupled to the signal receiving circuit, for generating a backlight control signal according to the display synchronization signal; and a driving circuit, coupled to the control circuit, for driving a backlight source according to the backlight control signal.
Abstract:
A capacitive touch-control panel apparatus is illustrated. The capacitive touch-control panel apparatus includes a touch-control substrate and a hub circuit. The touch-control substrate has M touch areas, and each touch-control area includes an axial body and N electrodes. N electrodes are disposed corresponding to the axial body and are electrically connected to the hub circuit. One of the electrodes on each touch-control area is connected to one of the electrodes on the other touch-control area by one-to-one manner, wherein M and N are positive integer.
Abstract:
A semiconductor device of the present invention comprises: a P type semiconductor substrate, an N-well, a first P+ diffusion region, a second P+ diffusion region, a Schottky diode, a first N+ diffusion region, a second N+ diffusion region, a third P+ diffusion region, a fourth P+ diffusion region, a first insulation layer, a second insulation layer, a first parasitic bipolar junction transistor (BJT), and a second parasitic BJT. The Schottky diode is coupled to an input signal. The first N+ diffusion region and the second N+ diffusion region are coupled to a voltage source, respectively. When a voltage level of the input signal is higher than a voltage level of the voltage source, the Schottky diode conducts charges to make the first parasitic BJT and the second parasitic BJT not conducted.