摘要:
Provided herein are methods and compositions for expression of a nucleic acid construct comprising nucleic acids encoding a) a recombinant polypeptide, and b) a prototrophy-restoring enzyme in a host cell that is auxotrophic for at least one metabolite. In various embodiments, the host cell is auxotrophic for a nitrogenous base compound or an amino acid. The invention involves introducing an analog into the growth media for the host cell such that the analog is incorporated into the recombinant polypeptide or a nucleic acid coding sequence thereof. In various embodiments, the compositions and methods disclosed herein result in improved recombinant protein expression compared to expression of recombinant protein in an antibiotic selection system, or compared to expression of the recombinant protein in an expression system that lacks a metabolite analog.
摘要:
Provided herein are methods and compositions for expression of a nucleic acid construct comprising nucleic acids encoding a) a recombinant polypeptide, and b) a prototrophy-restoring enzyme in a host cell that is auxotrophic for at least one metabolite. In various embodiments, the host cell is auxotrophic for a nitrogenous base compound or an amino acid. The invention involves introducing an analogue into the growth media for the host cell such that the analogue is incorporated into the recombinant polypeptide or a nucleic acid coding sequence thereof. In various embodiments, the compositions and methods disclosed herein result in improved recombinant protein expression compared to expression of recombinant protein in an antibiotic selection system, or compared to expression of the recombinant protein in an expression system that lacks a metabolite analogue.
摘要:
This invention is a process for improving the production levels of recombinant proteins or peptides or improving the level of active recombinant proteins or peptides expressed in host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recombinant protein expression. The process can improve protein production or can improve protein quality, for example, by increasing solubility of a recombinant protein.
摘要:
The present invention relates to the field of recombinant toxin protein production in bacterial hosts. In particular, the present invention relates to production processes for obtaining high levels of a recombinant CRM197, Diphtheria Toxin, Pertussis Toxin, Tetanus Toxoid Fragment C, Cholera Toxin B, Cholera holotoxin, and Pseudomonas Exotoxin A, from a bacterial host.
摘要:
The present invention provides methods for producing recombinant peptides in a bacterial host utilizing a mannitol, arabitol, glucitol, or glycerol-inducible promoter, wherein the host bacterial cell that produces the peptide has been rendered incapable of degrading or metabolizing mannitol, arabitol, or glucitol, or derivatives or analogues thereof. The present invention provides bacterial cells that have been genetically altered to inhibit the metabolism or degradation of mannitol, glucitol, or arabitol, or derivatives or analogues thereof. The present invention utilizes mannitol, arabitol, glucitol, or glycerol to induce expression of a target polypeptide from an inducible promoter, allowing for the use of an inexpensive and stable carbon source inducer in the fermentation processes for the production of recombinant peptides.
摘要:
Provided herein are methods of production of recombinant E. coli asparaginase. Methods herein allow production of asparaginase in Pseudomonadales host cells at high expression levels and having activity comparable to commercially available asparaginase preparations.
摘要:
The present invention provides an array for rapidly identifying a host cell population capable of producing a heterologous protein with improved yield and/or quality. The array comprises one or more host cell populations that have been genetically modified to increase the expression of one or more target genes involved in protein production, decrease the expression of one or more target genes involved in protein degradation, or both. One or more of the strains in the array may express the heterologous protein of interest in a periplasm compartment or may secrete the heterologous protein extracellularly through an outer cell wall. The strain arrays are useful for screening for improved expression of any protein of interest including therapeutic proteins, hormones, growth factors, extracellular receptors or ligands, proteases, kinases, blood proteins, chemokines, cytokines, antibodies and the like.
摘要:
The present invention relates to the field of recombinant protein production in bacterial hosts. It further relates to extraction of soluble, active recombinant protein from an insoluble fraction without the use of denaturation and without the need for a refolding step. In particular, the present invention relates to a production process for obtaining high levels a soluble recombinant Type 1 interferon protein from a bacterial host.
摘要:
Provided herein are improved copy number plasmids, particularly those plasmids capable of replication in a bacterial cell. The improved copy number plasmid contain a deletion, insertion, or substitution in the replication control region, particularly a Pseudomonas-specific replication control region, that results in an increase in plasmid copy number in comparison to a control plasmid. Also provided are host cells containing the improved copy number plasmids, as well as methods of using the improved copy number plasmids for the recombinant production of a protein of interest. Further provided are methods for generating plasmids with improved copy number. The methods disclosed herein involve the reiterative selection of improved copy number plasmids by the growth and selection of plasmids capable of growth under increasing selective pressure, wherein the selective pressure is applied utilizing a selection agent to which the control plasmid confers resistance.