摘要:
The invention is directed to an apparatus for continuous and non-destructive monitoring of the connection of a conveyor belt. During movement of the conveyor belt, a radiation source emits rays in the direction of the belt surface. The rays are of such high energy that they penetrate the conveyor belt and the connection thereof within a material-free region. A sensor detects the rays which have passed through. A process computer evaluates the result of the radiographic examination by comparing the actual connection values to set connection values and connection limit values. The radiation source and the sensor are accommodated in a housing. The housing has two openings between the radiation source and the sensor through which the moving conveyor belt passes without contact. The housing is integrated into the lower run of a conveyor system.
摘要:
The invention relates to a device for monitoring a conveyor (1), comprising: a conveyor belt (2) made of elastomer material, having a carrying side (3) for the goods to be conveyed, and a running side (4), whereby the conveyor belt has, in particular, an embedded strength support; an optoelectronic system (5) that optically detects the carrying side (3) and/or the running side (4), particularly the carrying side, in that it recognizes damage during operation, and if a critical state of the conveyor belt is reached, triggers an acoustical and/or optical alarm (11) and/or, in particular, brings about an automatic shut-down of the system; a process computer (6), which is coupled with the optoelectronic system (5), for the purpose of evaluating all of the data, whereby the process computer is connected with the alarm (11) and/or a drive control (12); as well as other system parts, namely contact drums (8), support rollers (9), support scaffolding, as well as any other components that might be necessary. The device according to the invention is characterized in that the device is additionally equipped with at least one structure-borne noise sensor (10) that detects deviations from the reference frequency, whereby a process computer (6) that is connected with the structure-borne noise sensor evaluates the change in frequency, specifically with simultaneous balancing with the reports from the optoelectronic system (5), so that even in a case where the optoelectronic system itself does not report a critical state, an acoustical and/or optical alarm and/or in particular, an automatic shut-down of the conveyor is brought about, in that the process computer responsible for the structure-borne noise sensor is also connected with an alarm (11) and/or the drive control (12).
摘要:
A device for non-destructive inspection of a conveyor belt made from an elastomeric material has a carrying side for the goods to be conveyed, a running side, and an embedded strength support, whereby the conveyor belt is set in motion. A radiation source emits rays in the direction of the belt surface, which rays are so energy-rich that they pass through the conveyor belt, whereby a process computer evaluates the result of the irradiation test.
摘要:
The invention relates to a conveyor belt (1) provided with a bearing side (2) and a backing side (3) made of an elastomer material, in addition to an embedded reinforcement carrier (4), wherein the bearing side (2) is reinforced with ball-type elements (5).
摘要:
The invention relates to a conductor loop, embedded in a polymer, in particular an elastomeric material, in the form of a flex construction, comprising a single flex, or multiple flexes, whereby each flex, for its part, comprises at least two individual wires, in particular, as a component of a transport belt, with a support side, a running side and an embedded tensile support, whereby the transport belt is provided with at least one conductor loop. The conductor loop is characterized in being embodied as an open flex helix, whereby each individual wire is enclosed by polymeric material.
摘要:
A conveyor belt has a carrying side cover plate and a running side cover plate each of a polymer material having elastic properties. The conveyor belt defines a conveyor belt longitudinal direction (X) and has an embedded reinforcement and at least one of the cover plates is provided with a hybrid conductor loop. The hybrid conductor loop communicates in a contactless manner with an interrogation station in the form of a transmitter/receiver pair. The hybrid conductor loop has a flattened conductor cross section and runs in the conveyor belt obliquely at an angle (α) relative to the conveyor belt transverse direction (Y) to form a diagonal direction (Z). The transverse direction (Y) is at right angles to the longitudinal direction (X). The arrangement of the transmitter/receiver pair is adapted to the diagonal direction (Z) to so increase the mutual spacing of the transmitter and the receiver.
摘要:
A conveying arrangement includes a conveyor belt having a carrying-side cover plate and a running-side cover plate. The conveying arrangement further includes a drive drum, a reversing drum, carrying rollers and a carrying structure. The conveying arrangement forms a material-conveying upper strand (A) with a charging location for the conveyed goods and a lower strand (B). A device for generating current is provided at the charging location for the conveyed goods underneath the conveyor belt of the upper strand (A). The device includes an impact bearing having sliding properties for the running-side cover plate of the conveyor belt of the upper strand (A). A generator is operatively connected to the impact bearing and a supporting device is provided for the generator. The generator converts at least part of the impact energy of the conveyed goods into electric current.
摘要:
A conveying system includes a conveyor belt having a carrying-side cover plate for accommodating goods to be conveyed and a running-side cover plate free of goods. Each of the cover plates is made of polymer material having elastic characteristics. A drum engages the conveyor belt at one of the side cover plates whereat a spark can develop during operation of the conveying system. A device detects the spark and corresponds with an evaluation unit. The evaluation unit is configured to transmit a signal to a fire-extinguishing unit upon detection of the spark.
摘要:
An apparatus non-destructively inspects a conveyor belt in a production facility. The conveyor belt defines a belt surface and has cover plates made of a rubber mixture. The production facility includes a vulcanizing press for vulcanizing the conveyor belt during production thereof. The apparatus includes a housing forward or rearward of the press. The housing has openings through which the conveyor belt passes. A radiation source mounted in the housing transmits rays toward the belt surface and the radiation source is configured to transmit the rays with energy sufficient to cause the rays to pass through the conveyor belt. A sensor mounted in the housing detects the rays passed through the conveyor belt to facilitate a radiographic check by providing actual values of the conveyor belt. A processor evaluates the radiographic check by comparing the actual values of the conveyor belt to set values of the conveyor belt.
摘要:
A system for the non-destructive inspection of a conveyor belt which includes a cover on the carrying side, a cover on the backing side, each cover being made of elastomeric material, and embedded tension members. While the conveyor belt is moving, a radiation source emits rays to the belt surface which are of such high energy that the rays pass through the belt within a region free of material disposed on the belt. A sensor detects the rays passing through the belt. A processor is operatively connected to the sensor and evaluates the result of the radiographic check. The radiation source and the sensor are accommodated in a housing, wherein, between the radiation source and the sensor, there are two housing openings through which the moving belt runs without contact.