摘要:
An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
摘要:
An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
摘要:
The use of rapid cycle pressure swing adsorption having a cycle time of less than 30 s for increasing the hydrogen concentration in hydrogen-containing steams, from a hydrogen source, such as a stream reforming unit.
摘要:
Distributed valve simulated moving beds are described in which junctions located between successive columns interrupt the flow of process fluid between columns, and either transmit the process fluid through a zone bypass to a succeeding column within the same zone or, if the junction is located between zones, direct the process fluid to an input/output line that is dedicated to the particular zone that immediately follows the junction. At each step of the SMB's operation, the distribution of flows in each junction is modulated to accomplish movement of ports consistent with the SMB's design. The described system can be employed to accomplish moving ports chromatography. Further described are simulated moving beds that contain one or more decoupled on-line regeneration zones. The regeneration zone is decoupled from the separation zones in the sense that it observes a step time (a “regeneration interval”) that is different than the step time observed by the separation zones of the SMB. Because the regeneration zone is “on-line,” the SMB need not be stopped to remove columns for regeneration. Because the regeneration zone is decoupled from the separation zones, the column can stay in the regeneration zone as long as needed to accomplish the regeneration, regardless of the step time observed by the SMB.
摘要:
An improved oxygen concentrator includes an oxygen sensor, valve and timer for periodically directing a breathable gaseous mixture having increased oxygen concentration to the sensor. A preferred assembly includes an alarm and means for increasing oxygen concentration in the breathable gaseous mixture when the concentration falls below a selected concentration.
摘要:
An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
摘要:
An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
摘要:
An evaporative emission control canister system comprises an initial adsorbent volume having an effective incremental adsorption capacity at 25° C. of greater than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, and at least one subsequent adsorbent volume having an effective incremental adsorption capacity at 25° C. of less than 35 grams n-butane/L between vapor concentration of 5 vol % and 50 vol % n-butane, an effective butane working capacity (BWC) of less than 3 g/dL, and a g-total BWC of between 2 grams and 6 grams. The evaporative emission control canister system has a two-day diurnal breathing loss (DBL) emissions of no more than 20 mg at no more than 210 liters of purge applied after the 40 g/hr butane loading step.
摘要:
A user interface for a portable oxygen concentration system. The user interface includes a touch screen and a controller coupled to the touch screen. The controller is configured to detect when a first portion of the touch screen is contacted by a user, and thereafter operate the touch screen for displaying an icon on a second portion of the touch screen.
摘要:
A process for dehydrating and removing heavy hydrocarbons in the production of liquefied natural gas from a methane-rich gas mixture is disclosed, wherein the methane-rich gas mixture subjected to deacidification treatment is divided into two streams, i.e. the first stream and the second stream, wherein the first stream used as a system process gas is introduced into a drying procedure, and the second stream used as regenerating gas is introduced into a regenerating procedure; the first stream is subjected to a drying treatment, and the moisture and the heavy hydrocarbons are simultaneously removed from the first stream in a composite adsorbent bed(s) of a drying tower, wherein the moisture is removed such that the dew point at normal pressure is ≦−76° C. and the heavy hydrocarbon components of C6 and higher are removed such that the content of these components is ≦217 ppm; and the second stream is used as a regenerating gas in the regenerating procedure of the above-mentioned drying tower, subjected to a regenerating process, and then returned as a part of the system process gas. Comparing to those conventional processes, the present invention can achieve good purifying effect, lower equipment investment and late-stage energy consumption of the system, increase utilization ratio of feed gas, and the operation target of each unit becomes more clear and easy to control. The present invention further relates to an apparatus for carrying out the process.