Abstract:
The invention provides a process for separating a solution from magnetic resin portions, particles and/or fines by passing a solution containing the resin portions, particles and/or fines through a bed of particulate magnetic material.
Abstract:
An ion-exchange resin stabilized against shrinkage, the resin being loaded with at least one amphiphilic ion in the absence of sodium cations.Also a process for removing iodide compounds from a liquid carboxylic acid and/or carboxylic acid anhydride obtained from the Group VIII noble metal catalysed, alkyl iodide co-catalysed carbonylation of alcohols and/or their reactive derivatives by contacting the liquid carboxylic acid and/or carboxylic acid anhydride with the ion-exchange resin stabilized against shrinkage as aforesaid, the ion-exchange resin being loaded with one or more of the metals silver, palladium or mercury.
Abstract:
This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.
Abstract:
Proposed is a method for the preparation of an efficient ion exchanger useful for separation and recovery of cesium ions from an aqueous solution such as strongly acidic waste solutions containing radioactive species of cesium. The method comprises the steps of (a) adsorption of hexacyanoferrate (II) ions on to porous particles of an anion exchange resin, (b) conversion of the hexacyanoferrate (II) ions into water-insoluble copper salt thereof in situ in the resin pores, (c) an oxidation treatment of the resin particles and (d) a reduction treatment in the presence of potassium ions followed by contacting of the resin particles with an aqueous solution containing copper ions. A method for the regeneration of the ion exchanger after adsorption of cesium ions is also proposed.
Abstract:
For the conditioning of ion exchange resins, pure water is recirculated over a bed of the resin to be purified or of the resins to be purified. The pure water has a residual salt content of less than 50 ppb and a content of free acids or free bases of less than 5,000 ppb. The organic and inorganic substances washed out of the resin or the resins are removed continuously from the circulating water by methods for the purification of water. The process can be used for conditioning the ion exchange resins used in an ultra pure water production system.
Abstract:
A process for selectively removing anions from an aqueous solution involves contacting the solution for an effective period of time with a specialized polymer in a porous format. The polymer has ligand sites capable of forming coordination or complexation bonds with multi-valent metal cations which serve to activate the polymer with respect to chemical interaction with anions. The polymer, saturated with the multivalent metal cations, contains between 2% and 20% of metal cation based upon the dry weight of the polymer.
Abstract:
Solid sorbents such as activated carbon and ion exchange resins are ballasted with finely divided particles of a non-corrosive, magnetic iron-chromium alloy to increase their effective specific gravity and to render them recoverable by magnetic means. The sorbents are used to selectively extract one or more constituents contained in a liquid as by contacting in a multi-stage fluidized bed.
Abstract:
Microporous anionic exchange and non-ionic adsorbent resins which are capable of adsorbing an antibiotic and which have been coated with a non-ionic detergent are disclosed. When contacted with bacterially infected body-fluid specimens, the disclosed resins remove antibiotics from the specimen while exhibiting diminished bacterial adsorption. A combination of a disclosed detergent-coated non-functional adsorbent resin with a cationic resin removes other bacterial inhibitors, as well as antibiotics, from bacterially infected body fluid specimens while permitting the bacteria to remain in the specimens. By removing bacterial inhibitors while sparing the bacteria, the disclosed resins make possible rapid isolation and identification of an infecting organism.
Abstract:
Lithium is preferentially extracted from brine containing Li salts along with salts of other metals, e.g. Na, Ca, Mg, K, and/or B, by contacting the brine with a particulate anion exchange resin having suspended therein a microcrystalline form of LiX.sup.. 2A1 (OH).sub.3, where X=halide.