Abstract:
The present invention relates to a method and arrangement for recovering lithium hydroxide from a mineral containing lithium, by pulping the raw material containing lithium in the presence of water and an alkali metal carbonate, leaching the obtained slurry twice, first at an elevated temperature, and secondly in an aqueous solution containing an alkali earth metal hydroxide, separating the thus obtained slurry into solids and a solution containing lithium hydroxide, the latter being purified, whereby lithium hydroxide monohydrate can be recovered from the purified solution by 10 crystallising, and finally separating the solution obtained during the crystallization from the process and recycling it to one or more of the previous process steps.
Abstract:
An arrangement for recovering lithium hydroxide from a mineral containing lithium, by pulping the raw material containing lithium in the presence of water and an alkali metal carbonate, leaching the obtained slurry twice, first at an elevated temperature, and secondly in an aqueous solution containing an alkali earth metal hydroxide, separating the thus obtained slurry into solids and a solution containing lithium hydroxide, the latter being purified, whereby lithium hydroxide monohydrate can be recovered from the purified solution by crystallising, and finally separating the solution obtained during the crystallization from the process and recycling it to one or more of the previous process steps.
Abstract:
A method of producing ammonium phosphates from at least one mineral containing phosphate and an element which is calcium, magnesium, iron, or aluminum. The method includes contacting the at least one mineral (or a combination of them) with a cation exchanger for a time and at a temperature sufficient to yield phosphoric acid from the mineral.
Abstract:
Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.
Abstract:
A new process for ion exchange softening of water used in Once-Through Steam Generators (OTSGs) by recovering and using the salt content of the blowdown water from the OTSG to regenerate the softener resin is provided, thus eliminating the cost for commercial regenerant salt that would otherwise be needed. Further, the very high purity of the salt recovered in the blowdown inherently results in the production of softened water with hardness leakage levels that are an order of magnitude lower than can be attained using commercial salt, thus reducing scale deposit potential and improving operating efficiency and reliability of the OTSG.
Abstract:
The present invention provides a polymer electrolyte membrane with excellent proton conductivity in its thickness direction. Preferably, the polymer electrolyte membrane containing a polymer compound comprising an ionic segment having an ionic functional group and a nonionic segment having substantially no ionic functional group, and the phase containing ionic segments as a main component and the phase containing nonionic segments as a main component are phase-separated, and in the surface region thereof, the change in the amount of the ionic segment from the surface toward the interior substantially decreases monotonically.
Abstract:
A method for making a weak cation-exchange (carboxylic acid) medium comprising contacting a solution of a functional organic polymer having carbon to carbon double bond unsaturation and having weak cationic exchange functional moieties or precursors thereof in a solvent with a substrate having an organic polymer surface, evaporating said solvent and breaking said double bond under conditions to cause the functional organic polymer to covalently bond to the substrate surface and to cross-link to form a cross-linked functional polymer layer covalently bound to the substrate surface. The medium produced by the method.
Abstract:
Solid and liquid compositions containing particles of highly fluorinated ion-exchange polymer having sulfonate functional groups with an ion exchange ratio of less than about 33. The compositions contain at least about 25% by weight of polymer particles having a particle size of about 2 nm to about 30 nm.
Abstract:
The present invention relates to an enantioselective cation-exchange material, comprising a chiral selector (1), composed of a chiral component (2) and at least one cation-exchange group (X), a spacer (3) and a carrier (4). The cation-exchange material is characterized in that the chiral component (2) has a molecular weight of less than 1,000 and the at least one cation-exchange group (X) is an acid group having a pKa