Abstract:
The invention relates to a method for the manufacturing of a plate (2) of metal or of a ceramic material, the plate comprising one or more fields (3) which occupy the major part of the surface of the plate and which on at least one side of the plate is high relief patterned, more specifically patterned such that the plate on said at least one side within the area of said field or fields has reliefs with high projections and deep valleys (9) or recesses (8) alternatingly, and between the sides a thin web (10), said high relief patterned field or fields being at least partly bordered by broad edge portions (4) which have a thickness larger than the mean thickness of the plate within the region of said high relief patterned field or fields. In a preparatory step an intermediate product (1) is manufactured, comprising at least a first portion (11) which shall form said high relief patterned field(s), which however is/are not yet high relief patterned but contain(s) an adequate quantity of material. Then this intermediate product is placed between two engraved moulding tool parts (30, 31), which are stricken against one another therein that an impact member with sufficiently high kinetic energy is stricken against at least one of the moulding tool parts for the material to flow out and fill the mould cavity between the tool parts.
Abstract:
A method of forming a body of a formable working material in an impact machine, which comprises an upper impact unit (29 with an upper ram (14), an upper punch (17), a lower impact unit (3) with a lower ram (24), a lower punch (27), and mould cavity for the working material between the punches when the punches are brought towards one another, is characterized in that downwards movable masses, which comprise at least the mass of the upper ram and the mass of the upper punch, and upwards movable masses, which include at least the mass of the lower ram and the mass of the lower punch, are caused to move towards one another and towards the working material in the mould cavity, that the masses which move downwards, including the upper punch (17) obtain a downwards directed velocity (v1) and those masses which move upwards, including the lower punch (27), obtain an upwards directed velocity (v2), wherein the movable parts have such masses and the velocities are so high that the momentums of the downwards movable masses and the upwards movable masses become essentially equally large, i.e. so that the following condition applies. m1×v1≅m2×v2 where m1 is the total mass of the downwards movable masses during the stroke, and m2 is the total mass of the upwards movable masses during the stroke.
Abstract:
Provided is a method and an apparatus for manufacturing a lance nozzle comprising: a casting step for primarily manufacturing the lance nozzle comprising a plurality of discharge pipes, which discharge a gas supplied through an inlet to an outlet, and a front wall with a plurality of discharge holes, each of which is connected to the outlet of the discharge pipe; and a forging step for forming forging structure by forging a circumference of the discharge holes in a front surface of the front wall positioned on an opposite side to the discharge pipes.
Abstract:
The disclosure relates to a tool and a method for shaping a conductor bar for an electric machine and a use of such a tool. Disclosed is a tool for shaping a conductor bar for an electric machine, with a hammer or a movable wheel supported by arms, the hammer or the movable wheel are suitable for engaging and exerting force to the conductor bar to modify the height h and/or the surface structure of the conductor bar, whereas the hammer conducts a bidirectional movement in the axial direction of the tool, whereas the wheel conducts a bidirectional movement in the axial direction of the tool and/or a rotating movement, whereas the tool applies heat to the conductor bar by friction of the hammer or the movable wheel. It is one advantage of the invention that the method and the tool do not remove any material from the conductor bar.
Abstract:
An exemplary process includes determining a desired pore size, selecting an initial pore size greater than the target pore size, manufacturing a porous structure with the initial pore size, forging the porous structure to form a forged part having the desired pore size, and forming an orthopedic device from the forged part.
Abstract:
A method for the manufacturing of a plate (2) of metal or of a ceramic material, the plate having one or more fields (3) which occupy the major part of the surface of the plate and which on at least one side of the plate is high relief patterned such that the plate on said at least one side within the area of said field or fields has reliefs with high projections and deep valleys (9) or recesses (8) alternatingly, and between the sides a thin web (10), said high relief patterned field or fields being at least partly bordered by broad edge portions (4) which have a thickness larger than the mean thickness of the plate within the region of said high relief patterned field or fields. In a preparatory step, an intermediate product (1) is manufactured. This intermediate product includes at least a first portion (11) which shall form said high relief patterned field(s), which however is/are not yet high relief patterned but contain(s) an adequate quantity of material. This intermediate product is then placed between two engraved moulding tool parts (30, 31), which are stricken against one another therein that an impact member with sufficiently high kinetic energy is stricken against at least one of the moulding tool parts for the material to flow out and fill the mould cavity between the tool parts.
Abstract:
An exemplary process includes determining a desired pore size, selecting an initial pore size greater than the target pore size, manufacturing a porous structure with the initial pore size, forging the porous structure to form a forged part having the desired pore size, and forming an orthopedic device from the forged part.
Abstract:
Designs of a tool for seating engine pistons and related methods are disclosed. For example, a tool may comprise a mount element, coupled to a support element, with at least one sleeve shaped to slide onto one or more studs on an EMD engine block. The tool may also comprise a locator element, coupled to the mount element, having a guiding ring positioned relative to the at least one sleeve. The tool may further comprise a cantilever beam pivotally coupled to the support element. The tool may additionally comprise a push rod inserted through the guiding ring and coupled to the cantilever beam, such that a pivoting motion of the cantilever beam causes a linear movement of the push rod through the guiding ring. An attachment element, located on one end of the push rod, may be adapted to attach to a piston of the EMD engine.